Методы решения уравнений и неравенств, содержащих знак модуля, в школьном курсе математики
Нестандартные приемы решения уравнений и неравенств, содержащих модуль, изучаемых на дополнительных занятиях и при решении олимпиадных задач. Типовые задания на решение уравнений и неравенств. Задания тестовых вариантов Единого Национального Тестирования.
Подобные документы
Сущность совместной системы уравнений. Признаки несовместной системы уравнений. Понятие эквивалентной системы уравнений. Элементарные преобразования системы. Гаусс Карл Фридрих как выдающийся немецкий математик. Решение уравнений методом Гаусса.
презентация, добавлен 14.01.2018Использование матричных уравнений в теории устойчивости движения, при решении дифференциальных уравнений Риккати и матриц Сильвестра. Формула неоднородного уравнения. Существенное отличие частного решения от конструкции в виде псевдообратного оператора.
статья, добавлен 30.10.2016Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.
контрольная работа, добавлен 02.12.2012Геометрическое определение модуля, обозначение расстояния между точками плоскости. Уравнения, содержащие два и более выражений со знаком модуля, наибольшее целое решение неравенства. Построение графиков функций, разбивание числовой прямой на промежутки.
реферат, добавлен 29.11.2010- 80. Численные методы
Основные методы и алгоритмы вычислительной математики. Точные и приближенные числа, классификация погрешностей. Интерполирование функций, формула Лагранжа. Методы решения нелинейных уравнений, матричных уравнений и задач на собственные значения.
учебное пособие, добавлен 16.12.2016 Решение задач при построении графиков функций, содержащих знак модуля. Применение основного действия при построении графиков - "снятие модуля". Замена этой операции геометрическим преобразованием графиков. Раскрытие знака модуля согласно его определению.
лекция, добавлен 24.11.2011Графическое решение квадратного уравнения. График уравнения с двумя переменными как множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство, принципы его составления. Применение графиков в решении неравенств.
реферат, добавлен 03.04.2012Сущность численных методов решения нелинейных и дифференциальных уравнений и интерполяции функций. Алгоритм решения типовых задач с помощью программного обеспечения. Анализ их достоинств и недостатков, сравнение эффективности работы каждой программы.
курсовая работа, добавлен 10.02.2019Определение понятий линейных и квадратных уравнений. Принцип решения данных уравнений: описание общих и частных случаев. Примеры и объяснение этапов решения, составление ответа. Решение линейных и квадратных уравнений с дополнительными условиями.
реферат, добавлен 09.02.2009Различные способы решения систем линейных уравнений для применения их на практике. Основные понятия матрицы и действия над ними. Метод Гаусса решения общей системы линейных уравнений. Правило Крамера, система n линейных уравнений с n неизвестными.
реферат, добавлен 06.03.2010Метод простых итераций (метод последовательных приближений). Вычисления для построения графика уравнения системы. Решение системы нелинейных уравнений Microsoft Excel с использованием надстройки "поиск решения". Решения системы уравнений в пакете mathcad.
курсовая работа, добавлен 07.11.2020Решение задач с параметрами – одна из сложных тем курса алгебры средней школы. Настоящая статья посвящена исследованию квадратных уравнений и сводящихся к ним систем уравнений, содержащих параметр, на некоторой области допустимых значений переменной.
статья, добавлен 13.07.2021Анализ результатов тестирования численного метода решения систем дифференциальных уравнений с задержанным аргументом, описывающих системы с хаотической динамикой, в пакете MatLab. Оценка фактической ошибки численного решения тестовой системы уравнений.
статья, добавлен 27.04.2019Решение нелинейных уравнений методом касательных. Интерполирование функции и полиномы Ньютона. Численное интегрирование, метод левых, правых и средних прямоугольников. Приближенное решение обыкновенных дифференциальных уравнений первого порядка.
курсовая работа, добавлен 17.04.2014Общее понятие о комплексных числах и изучение методов решения уравнений первой степени. Примеры квадратных, кубических уравнений и извлечение корней. Число действительных корней и методы решения уравнений в радикалах о существований корней уравнений.
презентация, добавлен 13.05.2012Матрицы и действия над ними (обратная матрица). Системы линейных уравнений. Система n линейных уравнений с n неизвестными. Правило Крамера. Метод Гаусса решения общей системы линейных уравнений. Критерий совместности общей системы линейных уравнений
реферат, добавлен 26.02.2010Систематизация знаний о системах линейных уравнений. Метод Гаусса как наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Метод удобнее применять на расширенной матрице. Пример решения уравнений.
презентация, добавлен 17.05.2023Решение уравнений в целых и рациональных числах как один из самых красивых разделов математики, теоретические и практические сведения которого используются в инженерии, биологии и повседневной жизни. Анализ способов решения линейных диофантовых уравнений.
статья, добавлен 06.04.2019История развития знаний и известные способы решения квадратных уравнений. Зависимость корней от знака дискриминанта. Решение квадратных уравнений с помощью циркуля, линейки. Свойства коэффициентов квадратного уравнения, теорема Виета и задача Диофанта.
презентация, добавлен 13.01.2017Проблема численного решения линейных уравнений. Основные методы решения нелинейных уравнений. Графическая иллюстрация метода половинного деления. Создание функциональной модели нахождения корней уравнения методами Ньютона, хорд и половинного деления.
дипломная работа, добавлен 31.10.2014Сущность обыкновенных дифференциальных уравнений, описание их общего вида и основные правила решения. Понятие условия Коши, его применение. Роль дифференциальных уравнений в решении прикладных задач. Порядок нахождения уравнения кривой, основные методы.
курсовая работа, добавлен 25.11.2013Особенности определения показательной функции. График и свойства этой математической величины. Понятие и особенности показательных уравнений, характеристика нескольких способов их решения. Свойства показательных неравенств, описание способов их решения.
презентация, добавлен 24.10.2012Преобразование графиков тригонометрических функций путем параллельного переноса, сжатия и расширения. Анализ промежутков монотонности функции. Точки экстремума. Формирование навыков решения и построения тригонометрических уравнений и неравенств.
презентация, добавлен 02.05.2012Рассмотрение различных способов решения тригонометрических уравнений. Ознакомление с понятием и историей возниконовения тригонометрии. Составление алгоритма решения задания. Описание воспитания самостоятельности и творческого отношения к деятельности.
презентация, добавлен 19.11.2013Алгоритм выполнения задачи решения уравнения с одной переменной с нахождением всех его корней или установление доказательства, что корни отсутствуют. Понятие корня линейного равенства. Правила раскрытия скобок. Задания для самостоятельного решения.
презентация, добавлен 14.10.2013