Достаточные условия корректности метода матричной прогонки

Рассмотрение методов решения систем алгебраических уравнений с блочными матрицами ленточной структуры. Ознакомление с общими условиями корректности метода матричной прогонки. Проведение проверки существования обычного LU-разложения для матрицы Якоби.

Подобные документы

  • Рассмотрение начальной задачи для систем уравнений и использование развитой методики дополнительного аргумента для решения задачи. Применение развитой методики для доказательства существования решения новых видов векторно-матричных нелинейных уравнений.

    статья, добавлен 07.08.2020

  • Основные формулы, используемые в методе Крамера и методе обратной матрицы при решении системы линейных алгебраических уравнений. Решение СЛАУ с помощью MS Excel. Ввод матрицы коэффициентов и вектора свободных коэффициентов. Определение обратной матрицы.

    лабораторная работа, добавлен 11.03.2011

  • Использование итерации в прикладной математике. Выполнение арифметических операций над переменными с плавающей точкой на компьютере. Преобразования матрицы чисел прямым и обратным ходом Гаусса. Решения линейных систем уравнений методом квадратного корня.

    лабораторная работа, добавлен 21.03.2014

  • Решение системы линейных алгебраических уравнений (СЛАУ) четырьмя способами: с помощью формул Крамера; обратной матрицы; метода замещения (способом последовательных приближений) и классического метода Гаусса (последовательного исключения переменных).

    задача, добавлен 15.01.2014

  • Решение систем линейных алгебраических уравнений как одна из основных задач вычислительной линейной алгебры, рассмотрение основных способов. Общая характеристика метода Гаусса. Анализ схемы единственного деления. Знакомство с особенностями метода Зейделя.

    курсовая работа, добавлен 18.10.2013

  • Анализ особенностей итерационных методов решателя, относящихся к семейству проекционных методов решения системы линейных уравнений. Изучение обобщенного метода минимальной невязки (GMRES), который может обрабатывать несимметричные разреженные матрицы.

    статья, добавлен 25.08.2020

  • Общий вид системы линейных алгебраических уравнений. Особенности квадратной системы линейных уравнений. Описание решения систем линейных уравнений методом вращений, рассмотрение теоремы Кронекера. Произведение матрицы элементарного вращения на вектор.

    контрольная работа, добавлен 12.03.2020

  • Сущность и основные методы решения системы линейных алгебраических уравнений. Понятие линейной зависимости, ее представление. Характеристика метода исключения Гаусса и полного исключения Жордана. Основные правила определения элементов обратной матрицы.

    лекция, добавлен 29.10.2013

  • Умножение элементов строки (столбца) матрицы. Понятие системы линейных уравнений и ее решения. Коэффициенты системы и свободные члены. Теорема Кронекера-Капелли. Линейная комбинация базисных столбцов матрицы. Условия существования решения системы.

    лекция, добавлен 15.09.2017

  • Формула для вычисления вектора частного решения неоднородной системы дифференциальных уравнений. Программа на С++ расчета цилиндрической и сферической оболочки. Формула для начала счета методом прогонки С.К. Годунова. Программа на С++ расчета цилиндра.

    диссертация, добавлен 04.03.2013

  • Вычисление определителя матрицы. Нахождение обратной матрицы, выполнение проверки. Решение системы линейных уравнений методом обратных матриц и методом Гаусса. Приведение расширенной матрицы к треугольному виду. Расчет координат нормального вектора.

    контрольная работа, добавлен 11.12.2012

  • Изучение трансцендентных уравнений, включающих алгебраические, тригонометрические и экспоненциальные функции. Характеристика точных и итерационных методов. Этапы нахождения корня уравнения итерационным способом. Применение метода половинного деления.

    контрольная работа, добавлен 17.05.2019

  • Правила решения систем линейных алгебраических уравнений. Понятие ранга матрицы. Преобразования матрицы, в результате которых сохраняется их эквивалентность. Классический метод решения СЛАУ. Теорема об эквивалентности при элементарных преобразованиях.

    контрольная работа, добавлен 16.01.2015

  • Необходимые и достаточные условия существования максимума и минимума функции, выбор метода нахождения экстремумов и полное математическое обоснование. Задачи, связанные с нахождением условного экстремума. Геометрический смысл метода множителей Лагранжа.

    курсовая работа, добавлен 18.08.2009

  • Точные, итерационные и прямые методы решения систем линейных алгебраических уравнений. Реализация решения СЛАУ с помощью Microsoft Excel. Блок-схема и описание алгоритма. Программа на языке VBA. Результаты выполнения программы с заданной точностью.

    контрольная работа, добавлен 08.04.2018

  • Понятие матрицы. Основные операции над матрицами. Понятие определителя матрицы. Вычисление определителей матрицы. Способ вычисления определителя n-го порядка. Основные свойства определителей. Методика решения систем линейных уравнений методом Крамера.

    реферат, добавлен 20.02.2012

  • Теоретические основы постановки и решения инженерных задач. Решение алгебраических и трансцендентных уравнений с одной переменной и систем алгебраических уравнений. Интерполяция, аппроксимация и численное интегрирование табличных и сложных функций.

    монография, добавлен 18.05.2015

  • Понятие линейной алгебры и две ее основные задачи: решение системы линейных алгебраических уравнений и определение собственных значений и собственных векторов матрицы. Численные методы решения данных задач: Гаусса, Крамера, итерации для линейных систем.

    контрольная работа, добавлен 12.12.2012

  • Варианты параллельной системы вычислений при решении систем дифференциальных уравнений первого порядка с нечеткими условиями. Анализ метода, предложенного Обергуггенбергером и Пицманом в статье "Дифференциальные уравнения с нечеткими параметрами".

    статья, добавлен 27.02.2019

  • Определение сущности и свойств обратной матрицы. Применение метода Гаусса-Жордана для нахождения обратной матрицы. Проблема выбора начального приближения в процессах итерационного обращения матриц. Решение системы линейных алгебраических уравнений.

    реферат, добавлен 26.01.2016

  • Матрицы и определители. Линейные операции над матрицами и их умножение. Свойства определителей. Системы линейных алгебраических уравнений. Метод Крамера и Гаусса Ранг. Теорема Кронекера-Капелли. Системы линейных однородных уравнений. Модель Леонтьева.

    лекция, добавлен 28.07.2015

  • Краткие биографические данные о жизни Фридриха Гаусса – немецкого математика, астронома и физика. Первые исследования метода решения систем линейных алгебраических уравнений. Понятие расширенной матрицей системы. Элементарные преобразования системы.

    курсовая работа, добавлен 05.12.2013

  • Решение системы дифференциальных уравнений 8-го порядка. Случай переменных коэффициентов. Формула для вычисления вектора частного решения. Перенос краевых условий в произвольную точку интервала интегрирования. Счет методом прогонки С.К. Годунова.

    курсовая работа, добавлен 25.03.2010

  • Определение минора k-го порядка матрицы. Использование методов окаймляющих миноров и элементарных преобразований для вычисления ее ранга. Линейная зависимость строк (столбцов) математических таблиц. Исследование систем линейных алгебраических уравнений.

    презентация, добавлен 29.08.2015

  • Правила решения систему линейных алгебраических уравнений методом Гаусса и Крамера. Порядок разложения вектора. Формирование уравнения медианы. Вычисление косинуса внутреннего угла треугольника. Расчет угла между ребрами пирамиды и площади грани.

    контрольная работа, добавлен 25.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.