Бесконечно малые и бесконечно большие величины. Теоремы о пределах. Раскрытие неопределенностей

Формульное выражение и свойства бесконечно малых функций, распространяемых на случаи алгебраической суммы конечного числа. Методы вычисления бесконечно больших величин. Изучение теоремы о пределах. Способы подстановки предельного значения аргумента.

Подобные документы

  • Математический анализ функции одной переменной, основные теоремы о пределах функций, их дифференцируемость. Производная и дифференциал высших порядков, экстремумы функций. Методы интегрирования, неопределенный и определенный интегралы, их свойства.

    шпаргалка, добавлен 12.01.2013

  • Появление математики как систематической науки и влияние на философское мышление. Философские предпосылки обоснования исчисления бесконечно малых в эпоху Возрождения. Неевклидовы геометрии и развитие философии математики в XIX веке. Математика в XX веке.

    реферат, добавлен 11.09.2010

  • Построение и анализ многочлена Тейлора. Примеры разложения функции по формуле Маклорена. Степенной порядок малости. Определение степени роста бесконечно большой величины в окрестности точки разрыва. Расчёт асимптоты графика функции на бесконечности.

    презентация, добавлен 26.09.2017

  • Греческая философия и математика. Возрождение. Философские предпосылки обоснования исчисления бесконечно малых. Неевклидовы геометрии и развитие философии математики в XIX в. Философия в сфере математики, способствующая выработке математического знания.

    реферат, добавлен 08.09.2010

  • Определение квадратной матрицы, на главной диагонали которой стоят единицы. Построение матрицы В, элементы которой получены путем умножения каждого элемента матрицы А на это число. Определение бесконечно большой величины. Правила дифференцирования.

    контрольная работа, добавлен 08.10.2014

  • Возникновение в России систематической научной работы неразрывно связано с учреждением Академии Наук. Леонард Эйлер и его трактаты: "Введение в анализ бесконечно малых", "Основания дифференциального исчисления" и "Основания интегрального исчисления".

    реферат, добавлен 05.03.2009

  • Ознакомление с условиями применения теоремы Ферма. Математическое выражение средств поиска целых величин из натуральных чисел. Изучение формул Абеля. Примеры уравнений, доказывающих правильность рассматриваемой теоремы. Область вспомогательных лемм.

    статья, добавлен 11.07.2015

  • Рассмотрение центральной предельной теоремы. Характеристика неравенства Чебышева, изучение его доказательства. Определение особенностей закона больших чисел в форме Чебышева. Выявление значения теоремы Бернулли, Пуассона. Формулировка неравенства Маркова.

    реферат, добавлен 12.11.2015

  • Понятие и примеры случайного события. Правила сложения и умножения в комбинаторике. Формулы вычисления вероятностей. Локальная и интегральная теоремы Муавра–Лапласа. Классы функций распределения. Непрерывные случайные величины. Закон больших чисел.

    краткое изложение, добавлен 21.03.2018

  • Основные свойства множеств с самоприрадлежностью. Бесконечно малая величина в математике. Множество, содержащее все множества, задаваемое непредикативной схемой свёртывания. Использование бесконечных, недостижимых последователей в математических теориях.

    статья, добавлен 26.04.2019

  • Возникновение дифференциальной геометрии. Доказательство теорем о пределах. Исследование функции на экстремумы, свойства непрерывных функций и производные. Теоремы о дифференцируемых функциях. Биографии ученых, внёсших вклад в развитие дифференциалов.

    курсовая работа, добавлен 11.02.2010

  • Операции над множествами. Свойства функции одной переменной. Теоремы о пределах. Производная функции. Уравнение касательной. Дифференциал функции; правило Лопиталя; комплексные числа; ряды. Интегрирование; дифференциальные уравнения; двойной интеграл.

    курс лекций, добавлен 07.03.2015

  • Обзор основных понятий о дифференциале функции и его применении в приближенных вычислениях. Определение дифференциала алгебраической суммы конечного числа дифференцируемых функций. Инвариантность формы дифференциала. Вынос постоянного множителя за знак.

    презентация, добавлен 21.09.2013

  • Формирования условий в центральных предельных теоремах, при которых последовательности частичных сумм случайных величин сходятся к нормальному распределению. Закон больших чисел. Предельные теоремы перехода от дискретных случайных процессов к непрерывным.

    лекция, добавлен 21.03.2018

  • История открытия общего метода для построения касательной в любой точке кривой. Анализ первой печатной работы Г. Лейбница по дифференциальному исчислению. Дифференциал как бесконечно малое приращение. Определение понятия правой и левой производных.

    презентация, добавлен 25.11.2015

  • Краткая биография древнегреческого философа и ученого Пифагора Самосского, его роль в развитии математики. Моральный кодекс пифагорейцев. История создания теоремы Пифагора, различные формулировки и способы доказательства. Задачи на применение теоремы.

    реферат, добавлен 18.04.2015

  • Математический поиск вероятности события. Расчет двухмерных случайных величин. Теоремы сложения и умножения вероятностей. Закон распределения функции случайного аргумента. Изучение формулы полной вероятности. Математическое ожидание произведения величин.

    контрольная работа, добавлен 29.11.2015

  • Основные черты динамической системы, представляющие как математический интерес, так и большой интерес для приложений. Поиск и исследование простого и сложного состояний равновесия. Проведение исследования бесконечно-удаленной части вне концов оси Oy.

    курсовая работа, добавлен 08.03.2017

  • Ознакомление с первоначальной и современной формулировами теоремы Пифагоа. Представление наиболее простого, алгебраического, геометрического и Евклидового методов доказательств теоремы. Определение значения данной теоремы в математических науках.

    презентация, добавлен 15.03.2011

  • Понятие алгебры событий. Рассмотрение стохастического эксперимента определения вероятности. Свойства суммы и произведения событий. Методы расчета совместного появления двух величин. Основные формулы для исчисления функции Лапласа и теоремы Байеса.

    методичка, добавлен 07.10.2015

  • Основные теоремы интегрального исчисления. Задача на нахождение площади криволинейной трапеции. Определенный интеграл как предел интегральной суммы. Рассмотрение основной теоремы Ньютона-Лейбница. Свойства интеграла с переменным верхним пределом.

    лекция, добавлен 17.01.2014

  • Математические законы теории вероятностей. Рассмотрение статистических закономерностей, свойственных массовым явлениям. Сходимость последовательностей случайных величин. Изучение закона больших чисел. Возможности предсказаний массовых случайных явлений.

    лекция, добавлен 18.03.2014

  • Независимые события и правило умножения вероятностей. Анализ предельной теоремы Пуассона. Типичные законы распределения дискретных случайных величин. Особенность вероятностных векторов с самостоятельными компонентами. Сущность правила больших чисел.

    курс лекций, добавлен 23.04.2016

  • Краткий обзор развития тригонометрии, ее возникновение как одного из разделов астрономии. Теоремы сложения: тригонометрические функции суммы и разности аргументов, двойного и половинного аргумента, тангенсов, формулы площади треугольника, другие формулы.

    контрольная работа, добавлен 22.05.2009

  • Применение теоремы Фалеса для деления отрезка на n равных частей. Интерпретация теоремы о пропорциональных отрезках. Обоснование и доказательство правдивости теоремы Фалеса в планиметрии. Использование теоремы Фалеса в решении геометрических задач.

    презентация, добавлен 01.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.