Вычислительный эксперимент
Сущность и понятие вычислительного эксперимента, его роль и основные этапы. Сферы применения и основные задачи математического моделирования. Результаты расчёта последствий ядерного конфликта. Характеристика и функции пакетов прикладных программ.
Подобные документы
История возникновения понятия функции, его исследования ученым Лейбницем. Сущность задачи о колебании струны, ее проблематика решения. Характеристика и основные возможности открытия Фурье. Сущность функционала и оператора, их главные задачи и принципы.
доклад, добавлен 29.10.2013- 27. Фракталы
Общее понятие о фракталах. Самоподобие как одно из основных свойств фракталов. Основные типы фракталов и их характеристики: геометрические, алгебраические и схоластические. Роль фракталов в современном мире, основные области и сферы их применения.
реферат, добавлен 11.12.2011 Место высшей математики в инженерной деятельности. Основные направления развития процессов численных вычислений, приближенных методов и их приложений. Смысл математизации знаний. Привлечение сложного математического аппарата к решению прикладных задач.
реферат, добавлен 23.09.2014Характеристика значения оптических плотностей для плашек после сканирования при разных значениях яркости. Определение необходимого условия экстремума функции многих переменных, которое приводит к системе уравнений. Расчет задачи в матричном виде.
контрольная работа, добавлен 23.09.2014Особенности толкования понятий множества и функции в математическом анализе. Определение предела числовой последовательности. Сущность и свойства сходящихся последовательностей. Определение непрерывности функции в точке. Функции, непрерывные на сегменте.
учебное пособие, добавлен 13.09.2015Задача коммивояжера: понятие и сущность, основное содержание и общее описание, методы решения (жадный и деревянный метод, методы ветвей и границ, алгоритм Дейкстры) и их сравнительная характеристика. Сферы применения задачи коммивояжера на практике.
курсовая работа, добавлен 19.03.2012Основные этапы математического моделирования. Общие понятия и определение модели и их классификация. Математическая модель в задачах оптимизации. Элементарные математические модели. Задача о нахождении связи между структурой и свойствами веществ.
реферат, добавлен 29.03.2010Систематическое обучение студентов решению прикладных задач методом моделирования как один из путей реализации компетентностного подхода. Выявление затруднений, возникающих у студентов на этапах формализации условия задачи и интерпретации результатов.
статья, добавлен 16.06.2018Создание математической модели, имеющей те же вероятностные характеристики, что и изучаемое случайное явление - одна из основных идей метода статистического моделирования. Специфические особенности закона распределения дискретной случайной величины.
контрольная работа, добавлен 12.01.2017Процесс проведения математического исследования модели. Процесс программирования, расчет на ЭВМ, обработка результатов. Сущность задачи вычисления, ее основные особенности. Общая характеристика численных методов. Абсолютная и относительная погрешности.
курс лекций, добавлен 13.12.2013Роль статистического анализа при исследовании массовых явлений и процессов. Сущность, основные виды и способы расчёта средних величин. Оценка степени механизации и автоматизации работ. Характеристика качественных показателей коммерческой деятельности.
контрольная работа, добавлен 16.03.2017Целевые переменные и их значения. Назначение и классификация экономических моделей. Константы, применяющиеся для расчёта промежуточных и целевых параметров. Основные преимущества деловой игры как способа анализа и моделирования экономических процессов.
дипломная работа, добавлен 28.10.2019Анализ вычислительной сложности задачи трехмерной упаковки в общей постановке, а также основные подходы к ее решению. Содержание задачи математического программирования по размещению ориентированных произвольных невыпуклых многогранников сложных форм.
статья, добавлен 30.05.2017- 39. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.
дипломная работа, добавлен 21.01.2011 Сущность и содержание идеи создания математической теории конфликта – теории игр, основные этапы ее формирования и современное состояние. Понятие и базовые признаки игры. Интерпретация данной теории отечественными и зарубежными учеными, разница подходов.
реферат, добавлен 27.02.2011Основные понятия теории обыкновенных дифференциальных уравнений первого порядка. Достаточные условия существования и единственности решения задачи Коши. Метод последовательных приближений функции. Численные способы математического решения задачи Коши.
дипломная работа, добавлен 06.03.2016Особенности изучения воздействия природных и техногенных катастроф на окружающую среду. Применение детерминированного подхода математического моделирования при исследовании загрязнения природы. Сравнение полученных данных с допустимыми концентрациями.
контрольная работа, добавлен 25.12.2014Постановка задачи использования ресурса. Алгоритм решения, основные этапы и подходы к реализации данного процесса. Исходные данные и результаты решения некоторых задач о составлении рациона питания. Понятие переменной задачи, системы ограничений.
контрольная работа, добавлен 09.09.2012Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.
методичка, добавлен 27.10.2013Постановка задачи и основные этапы отыскания решения. Погрешности и критерии окончания метода деления отрезка пополам при решении нелинейного уравнения. Применение метода Ньютона, простых итераций, секущих и ложного положения при вычислительном процессе.
контрольная работа, добавлен 28.03.2015Эксперимент по нахождению экстремума методом крутого восхождения. Движение по градиенту – "крутое восхождение". Уточнение максимального значения функции отклика с помощью плана второго порядка. Нахождение интерполяционной функции (уравнения регрессии).
курсовая работа, добавлен 31.05.2016Понятие модели, сущность и цели процесса моделирования. Свойства моделей, их классификация. Процесс моделирования на примере изучения понятий величины и числа. Моделирование при решении сюжетных задач. Этапы процесса познания с помощью моделирования.
реферат, добавлен 23.04.2015Изучение античной греческой математики. Построение качественных, линейных количественных и нелинейных количественных моделей. Процесс структуризации данных. Уточнения и приближения. Корреляция и каузация. Аппроксимация функции конечным рядом Фурье.
контрольная работа, добавлен 29.10.2021Основные черты задачи Дирихле для уравнения Пуассона и необходимость применения сеточной функции. Сущность Чебышевского метода, его обоснование и применение на практике. Характеристика основных задач метода простой итерации при заданном числе узлов.
презентация, добавлен 30.10.2013Роль гипотез при разработке моделей. Их свойства: неполнота, адекватность, простота и потенциальность. Возможные виды задач, появляющиеся при математической постановке задачи моделирования, проверка корректности. Обоснование выбора метода решения задачи.
презентация, добавлен 07.06.2016