Абстрактная теория групп

Понятие алгебраической операции, ее характеристики и свойства, отличительные признаки и направления исследования. Свойства и изоморфизм групп. Реализация абстрактной группы как группы преобразований. Теорема о подгруппах конечной циклической группы.

Подобные документы

  • Геометрический смысл и свойства псевдовектора, перпендикулярного плоскости, построенного по двум сомножителям в результате бинарной операции. Варианты вычислений векторного произведения. Свойства смешанного произведения трех математических объектов.

    презентация, добавлен 01.09.2015

  • Понятие алгебры событий. Рассмотрение стохастического эксперимента определения вероятности. Свойства суммы и произведения событий. Методы расчета совместного появления двух величин. Основные формулы для исчисления функции Лапласа и теоремы Байеса.

    методичка, добавлен 07.10.2015

  • Рассмотрение различных подходов к конструированию распределения, задаваемого алгебраической байесовской сетью. Характеристика и особенности основных подходов к выбору распределения. Специфика алгоритма поиска распределения, случай циклической сети.

    статья, добавлен 15.01.2019

  • Особенность векторного произведения коллинеарных векторов. Характеристика создания градиентов в координатах. Анализ результата раскрытия определителя. Геометрические и алгебраические свойства смешанного творения. Суть циклической перестановки множителей.

    реферат, добавлен 23.10.2014

  • Некоторые сведения о последовательностях. Понятия, свойства числовых, функциональных, знакопеременных, степенных рядов. Признаки их сходимости: сравнения, Даламбера, Коши, Лейбница. Теорема Абеля. Разложение основных элементарных функций в степенные ряды.

    курс лекций, добавлен 22.06.2014

  • Понятие криволинейного интеграла, его функции и свойства. Три интегральных суммы криволинейного интеграла первого и второго рода, их взаимосвязь. Вычисление перемещения материальной точки вдоль кривой. Теорема существования криволинейного интеграла.

    реферат, добавлен 20.10.2014

  • История исследования свойств призмы, пирамиды, цилиндра и конуса. Изучение конических сечений, их характерные свойства. Отличительные особенности усеченного конуса. Свойства конуса в самолетостроении как основной фигуры, образующей конструкцию фюзеляжа.

    статья, добавлен 14.03.2019

  • Доказательство теоремы о выявлении алгебраической замкнутости поля С (то есть существования корня у любого отличного от константы полинома с комплексными коэффициентами) согласно с принципами лемм Даламбера и о достижении точной нижней грани значений.

    контрольная работа, добавлен 05.05.2013

  • Определение аффинных преобразований пространства, их основные свойства. Основные доказательства теорем про аффинные преобразования. Характеристика родства пространства: его определение, свойства (корректность определения направления родства и пр.).

    реферат, добавлен 23.11.2016

  • Изучение фундаментальных проблем и взаимосвязей в следующих направлениях современной алгебры: теория неассоциативных алгебр, теория конечных групп и алгебраическая геометрия. Исследования квантований алгебр, в конечных лиевых и нелиевых группах.

    научная работа, добавлен 28.10.2018

  • Анализ понятия матрицы: классификация и основные операции над ними. Определители квадратной матрицы и их свойства. Теоремы Лапласа и аннулирования. Обратная матрица: определение понятий, ее единственность, а также алгоритм ее построения и свойства.

    курсовая работа, добавлен 21.04.2011

  • Понятие конформного отображения. Свойства конформного отображения, теорема Римана, теорема Лиувилля. Применение конформного отображения. Характеристика и примеры конформного отображение внешности дуги на внешность круга. Метод и форма профилей Жуковского.

    курсовая работа, добавлен 03.10.2016

  • Основная теория алгебры. Корни многочлена и его производной. Свойства неприводимых многочленов. Алгоритмы разложения на неприводимые множители. Формула обращения Мёбиуса. Теоремы дополнения, сложения аргументов и умножения. Арифметические свойства чисел.

    книга, добавлен 28.12.2013

  • Изучение гладких многообразий. Примеры замкнутых поверхностей. Теорема Эйлера о многогранниках. Определение проективной плоскости по Риману. След движения окружности по плоскости. Алгебраическая топология многообразий. Группы гомотопий и гомологий.

    книга, добавлен 25.11.2013

  • Обзор комбинаторно-геометрических интерпретаций спорадических групп. Исследование особенностей автоморфизмов блок-схем специального вида. Геометрические интерпретации спорадических групп в виде диаграмм. Рассмотрение сущности классификационной теоремы.

    статья, добавлен 26.04.2019

  • Определение секущей равного наклона к двум данным прямым. Доказывание существования секущих равного наклона. Признаки параллельности двух прямых, их свойства. Формулирование одной из теорем планиметрии - теоремы о секущих, ее доказательство и следствие.

    реферат, добавлен 28.03.2014

  • Теорема синусов и косинусов; свойства средней линии треугольника, медиан и биссектрисы. Формулы находжения ценров описанной и вписанной окружности. Свойства квадрата, ромба, прямоугольника, трапеции, конуса, цилиндра. Вычисление шарового сегмента и пояса.

    контрольная работа, добавлен 12.03.2013

  • Понятие призмы как геометрического тела, история создания этой фигуры, геометрические свойства, сфера применения и способ расчета ее площади. Определение, виды и свойства параллелепипеда, доказательство его симметричности относительно середины диагонали.

    реферат, добавлен 30.04.2009

  • Описание всех локально конечных непримарных групп, в которых пересечение всех неинвариантных подгрупп совпадает с единичной подгруппой. Пересечение всех неинвариантных подгрупп каждой собственной недедекиндовой подгруппы отлично от единичной подгруппы.

    статья, добавлен 26.04.2019

  • Теория множеств с самопринадлежностью, свойства структурного изоморфизма при описании бесконечных самоподобных множеств. Анализ и описание свойств структурного изоморфизма, прикладная интерпретация этих свойств на предметной области формальных языков.

    статья, добавлен 26.04.2019

  • Понятие многочлена в математике. Степень и корни многочлена. Свойства корней многочлена в теореме Виета. Доказательства теорем о свойствах симметрических многочленов. Использование теоремы Виета и теории симметрических многочленов для решения задач.

    реферат, добавлен 12.11.2014

  • Сущность и общее представление тригонометрической функции. Понятие и общая характеристика показательной функции, ее основные свойства и признаки, особенности графического изображения и подходы к анализу. Разработка и принципы разрешения уравнений.

    разработка урока, добавлен 05.12.2014

  • Теорема о существовании единственности решения дифференциальных уравнений различных порядка с разделяющимися переменными. Решение систем с постоянными коэффициентами. Линейно независимые и зависимые системы функций. Определитель Вронского и его свойства.

    курс лекций, добавлен 30.07.2017

  • Теоретические аспекты понятия разности двух множеств как теоретико-множественной операции в математике, особенности пустого множества. Основные свойства разности множеств и сущность законов де Моргана. Реализация операции с помощью компьютерных программ.

    реферат, добавлен 18.02.2012

  • Понятие и общая характеристика, а также отличительные свойства и признаки аксонометрической проекции как способа изображения геометрических предметов на чертеже при помощи параллельных проекций, их разновидности. Основные типы и формы искажений.

    презентация, добавлен 26.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.