Рациональное возмущение линейных дифференциальных систем, не изменяющих отражающую функцию
Общие сведения об отражающей функции. Эквивалентность совпадения отражающих функций, вспомогательные утверждения и их доказательства. Решение задачи возмущения дифференциальных систем, не меняющего отражающей функции, справедливость теоремы.
Подобные документы
- 101. Метод Гаусса
Решение систем линейных алгебраических уравнений. Сравнение прямых и итерационных методов. Программа решения системы линейных уравнений по методу Гаусса и по методу Зейделя. Ограниченность оперативной памяти ЭВМ. Решение систем большой размерности.
курсовая работа, добавлен 28.01.2012 - 102. Основы статистики
Понятие линейных систем, классический метод их описания. Векторная функция, матрица нормальной системы дифференциальных уравнений. Физический смысл частного и вспомогательного решений. Метод вариации произвольных постоянных неоднородной системы.
реферат, добавлен 27.12.2013 Определение понятия динамического звена. Особенности описания динамических звеньев в виде нелинейных дифференциальных уравнений. Свойства передаточной функции. Использование теоремы преобразования Лапласа. Математическая модель объекта управления.
лекция, добавлен 23.07.2015Формирование современного понимания функциональной зависимости. Достаточные условия экстремума функции. Нахождение экстремума с помощью производной. Определение предела функции в теореме Коши. Эквивалентность различных определений предела функции.
реферат, добавлен 03.10.2012Рассмотрение решения линейных алгебраических систем с помощью метода Гаусса, постановки задачи, описания и сущности метода исключения, изучение точности метода, его преимуществ и недостатков, а также условий применимости и алгоритмов решения системы.
контрольная работа, добавлен 27.02.2014Обыкновенные дифференциальные уравнения (ОДУ) первого порядка, разрешенные относительно производной. Интегрирование ОДУ первого порядка. Доказательство теоремы Коши-Пикара о существовании и единственности решения задачи Коши для ОДУ первого порядка.
курсовая работа, добавлен 13.11.2013Методы решения систем линейных уравнений: Гаусса (последовательного исключения), Крамера, матричный метод. Классификация систем линейных уравнений по числу уравнений, неизвестных. Свойства определителей. Система ступенчатого вида с единственным решением.
контрольная работа, добавлен 23.04.2011Характеристика полиномиальной асимптотики решений. Анализ нормальной системы обыкновенных дифференциальных уравнений. Проверка абсолютной сходимости интеграла с помощью функций пространства. Особенность стремления аргумента бесконечности к полиному.
статья, добавлен 03.11.2015- 109. Вычислимые функции
Особенности перечислимых и разрешимых множеств. Анализ конструкции Поста. Изучение основных вычислимых последовательностей функций. Характеристика неподвижной точки и отношения эквивалентности. Исследование главных аспектов теоремы Мучника-Фридберга.
курс лекций, добавлен 28.12.2013 - 110. Исследование решений операторно-дифференциальных уравнений в частных производных высшего порядка
Рассмотрение общей схемы исследования нелинейных дифференциальных и интегро–дифференциальных уравнений в частных производных высокого порядка. Характеристика основ применяемого метода дополнительного аргумента. Сведение к решению интегрального уравнения.
реферат, добавлен 18.05.2016 Изучение свойств множеств, полученных в результате выполнения рандомизированных систем итерированных линейных функций. Выполнение усиленного неравенства треугольника. Определение ультраметрики, что делает очевидным многие фрактальные свойства аттрактора.
статья, добавлен 28.11.2016Понятие линейного программирование и его основные задачи. Сущность симплекс-метода и его применение для решения систем линейных уравнений. Примеры составления симплекс-таблицы, основные шаги алгоритма. Дополнительные и вспомогательные переменные.
реферат, добавлен 05.04.2013Вариационный подход Ритца. Схема метода Ритца. Базис из функций с финитным носителем. Пример построения схемы конечных элементов. Интерполяционный многочлен Лагранжа. Одномерные элементы, ассоциируемые с ними иерархические базисные функции, аппроксимации.
курсовая работа, добавлен 12.12.2010Характеристика и обоснование преимуществ метода численного интегрирования обыкновенных дифференциальных уравнений, разработанного Эверхартом. Исследование алгоритма и основной идеи построения метода Эверхарта на примере решения уравнений разных видов.
статья, добавлен 03.03.2018Связь нелокальных задач с нагруженными уравнениями. Понятие управления решения дифференциальных (нагруженных) уравнений со скоростью. Рассмотрение скорости изменения величин как характеристики исследования процессов. Вычисление исправленной производной.
статья, добавлен 20.05.2018- 116. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.
дипломная работа, добавлен 21.01.2011 Программирование процесса определения погрешности значений функций, приближенного решения систем уравнений, аппроксимации функций, вычисления интегралов, численного интегрирования дифференциальных уравнений, используя среду разработки Borland Delphi.
контрольная работа, добавлен 12.12.2012Характеристика определителя Вронского: определение, общая теория, свойства, примеры применения. Интегрирование неоднородных систем дифференциальных уравнений методом вариации произвольных постоянных: определения, общая теория метода, решение примеров.
курсовая работа, добавлен 22.04.2011Изучение квантильных дифференциальных уравнений Пфаффа, которые строятся на основе двухмерных условных квантилей многомерных вероятностных распределений. Исследование основных вероятностных свойств интегральных многообразий максимальной размерности.
статья, добавлен 31.05.2013Матрицы и действия над ними. Система n линейных уравнений с n неизвестными. Правило Крамера. Использование метода Гаусса решения общей. Критерий совместности общей. Решение систем линейных уравнений на экзаменах в различных математических вузах.
реферат, добавлен 02.02.2022Общая характеристика краевых задач Штурма-Лиувилля. Знакомство с особенностями и назначением теоремы Стеклова. Анализ свойств собственных значений и собственных функций задачи Штурма-Лиувилля. Рассмотрение обыкновенных дифференциальных уравнений.
контрольная работа, добавлен 02.12.2013Основные недостатки существующих методов определения фильтрационных параметров. Метод модулирующих функций (М-метод), его сущность. Определение постоянных и переменных коэффициентов в дифференциальных уравнениях. Типичный график модулирующей функции.
статья, добавлен 10.07.2013Решение системы уравнений методом Гаусса. Уравнение медианы, высоты, сторон треугольника. Вычисление внутренних углов треугольника. Исследование функции на непрерывность, поиск точки разрыва и характера разрыва. Поиск производной функции, предел функций.
контрольная работа, добавлен 18.02.2016Описание динамики разгона (торможения) судна. Математическая модель неустановившегося движения судна. Основные методы и алгоритмы решения задачи. Формирование функций задачи. Точное эталонное аналитическое решение системы дифференциальных уравнений.
курсовая работа, добавлен 12.10.2017Алгоритм численного метода решения систем обыкновенных дифференциальных уравнений (задачи Коши). Применение метода Эйлера в алгоритме. Перечень основных положений предложенного метода решения систем ОДУ. Программа реализации алгоритма на языке Си.
статья, добавлен 23.10.2010