Классическая формула подсчета вероятностей
Общее понятие случая и события в теории вероятностей. Порядок оценки вероятности события по относительной доле благоприятных случаев. Вероятность достоверного события как вероятность события, которое всегда происходит, полагается равной единице.
Подобные документы
- 101. Теория вероятности
Способы распределения медалей между игроками. Случайное событие и его дополнение. Описание пространства элементарных событий. Формула нахождения вероятности появления хотя бы одного события. Нахождение функции распределения дискретной случайной величины.
методичка, добавлен 20.12.2011 - 102. Случайные события
Соотношения между случайными событиями. Аксиоматическое и классическое определение вероятности, основные элементы комбинаторики. Теоремы умножения и сложения, вероятность суммы совместных событий. Основы формулы Бейеса, схема испытаний Бернулли.
учебное пособие, добавлен 12.03.2015 Анализ вероятности события на примере процентного соотношения брака в выборке произведенных деталей. Построение ряда распределения, дисперсии, оценка вероятности попадания случайной величины в заданный интервал. Оценка среднего квадратического отклонения.
контрольная работа, добавлен 03.04.2013Способы определения вероятности осуществления того или иного события. Оценка математического ожидания и дисперсии некой величины, построение графика функции распределения. Оценка плотности вероятности. Расчет диаграммы рассеивания и линии регрессии.
контрольная работа, добавлен 18.04.2013Определение суммы вероятностей всех элементарных событий. Формула нахождения вероятности наступления определенного количества успехов в серии из множества испытаний Бернулли. Несовместные - исходы, которые не наступают при проведении одного опыта.
презентация, добавлен 09.11.2015Классическое определение вероятности. Условная вероятность и теорема умножения вероятностей. Формула Бейеса и Бернулли. Последовательные испытания и дискретные случайные величины. Нормальное распределение, дисперсия и среднее квадратическое отклонение.
контрольная работа, добавлен 25.01.2015История развития теории вероятности как науки. Задачи вероятностного характера в различных азартных играх. Изучение теории вероятностей в работах Паскаля, Ферма, Гюйгенса. Теория ошибок измерения и парадоксы Бертрана. Российская школа теории вероятности.
реферат, добавлен 08.06.2017Сущность, предмет и основные объекты теории вероятностей. История становления и этапы развития теории вероятностей и математической статистики. Анализ вклада различных ученых в развитии теории вероятностей: Я. Бернулли, Моавр, Лаплас, Гаусс, Пуассон.
реферат, добавлен 13.03.2017Ознакомление с общими характеристиками теории вероятности. Применение теоремы Бернулли, формулы полной вероятности, центральной предельной теоремы. Сложение и умножение вероятностей. Нахождение оптимального решения, руководствуясь "правилом Лапласа".
контрольная работа, добавлен 17.11.2015- 110. Теория вероятностей
Вероятность независимых событий. Вероятность того, что два конкретных человека будут отдыхать в одном доме отдыха. Вероятность денежного выигрыша в лотерее. Вероятность попадания на сборку бракованной детали. Вероятность полного выздоровления пациента.
контрольная работа, добавлен 17.09.2012 - 111. Теория вероятностей
Три типа событий теории вероятностей, классическая вероятностная модель. Закон распределения случайной величины, понятие математического ожидания. Критерии для принятия решений в условиях неопределенности. Решение задач графоаналитическим методом.
контрольная работа, добавлен 29.11.2014 Вычисление вероятностей в классической схеме, геометрических, условных вероятностей с применением формул Байеса и полной вероятности. Анализ распределений случайных величин – дискретных, непрерывных, скалярных и векторных. Методы распределения функций.
методичка, добавлен 16.05.2016Рассмотрение расшифровки урновой схемы. Особенности определения геометрической вероятности. Исследование принципов применения формулы Бернулли в теории вероятности. Характеристика предельных значений вероятностей событий, интегральной теоремы Лапласа.
контрольная работа, добавлен 26.05.2015Проведение расчетов вероятностей сложных событий с использованием формулы классического определения вероятности. Применение формулы полной вероятности и формулы Бейеса. Нахождение в задаче числа исходов, благоприятствующих интересующему событию.
лабораторная работа, добавлен 06.10.2020Теория вероятностей и основные теоремы. Дискретная и непрерывная случайная величина. Статистическое распределение выборки, точечные и интервальные оценки. Доверительный интервал и критерий Пирсона. Элементы теории корреляции и формулы полной вероятности.
контрольная работа, добавлен 08.12.2011Изучение особенностей непосредственного подсчета вероятностей. Определение сущности статистической и геометрической вероятности. Характеристика центральной предельной теоремы. Исследование распределения случайных величин. Анализ теоремы Линдеберга.
контрольная работа, добавлен 30.03.2015Определение вероятности по формулам Бернулли и Байеса. Проведение исследования интегрального закона распределения. Вычисление математического ожидания, дисперсии и среднеквадратического отклонения. Особенность построения статистического разделения.
контрольная работа, добавлен 24.05.2016Ферма и Паскаль - основатели математической теории вероятностей. Изобретение Паскалем арифметической машины. Введение Гюйгенсом понятия математического ожидания. Применение теории вероятностей в различных областях. Зарождение "статистической физики".
статья, добавлен 25.07.2018Пространство элементарных событий. Случайное событие как результат опыта. Классическое и аксиоматическое определение его вероятности. Основные формулы комбинаторики. Независимые и зависимые явления. Априорные вероятности гипотез. Формула Байеса.
презентация, добавлен 29.09.2017Формулировка комбинаторных правил суммы и произведения. Комбинаторные схемы выбора. Формулы для числа размещений и сочетаний в схемах выбора. Определения суммы, произведения, разности событий, противоположного события. События на диаграммах Эйлера-Венна.
контрольная работа, добавлен 26.05.2012Понятие независимых событий и условных вероятностей, их примеры. Характеристика основных свойств независимых событий. Независимость в совокупности. Теорема сложения и умножения для n событий. Формула полной вероятности и доказательство теоремы Байеса.
презентация, добавлен 21.09.2017Возникновение теории вероятностей как науки. Аксиоматический подход и элементарные понятия теории множеств. Операции сложения и умножения событий. Решение типовой задачи на формулу Байеса. Формула полной вероятности в обеспечении качества продукции.
контрольная работа, добавлен 25.05.2015Формула классической вероятности. Теоремы сложения и умножения вероятностей. Формула полной вероятности, Байеса, Бернулли, Пуассона. Числовые характеристики дискретных случайных величин: дисперсия и пр. Законы распределения непрерывной случайной величины.
курсовая работа, добавлен 04.01.2016Определение вероятности попадания двумя стрелками в мишень. Расчет вероятности безотказной работы устройства. Рассмотрение биномиального закона распределения дискретной случайной величины. Определение функции распределения и построение ее графика.
контрольная работа, добавлен 31.10.2017Понятия случайной величины и события. Основные законы распределения, используемые в теории надежности. Математическое ожидание и среднеквадратическое отклонение числа событий. Определение интенсивности отказов и вероятности безотказной работы устройства.
реферат, добавлен 18.10.2016