Задача минимизации функции многих переменных

Общие сведения о прямых методах безусловной оптимизации. Виды многомерной оптимизации: методы нулевого, первого и второго порядка. Достаточные условия экстремума, функции безусловного экстремума. Необходимые условия экстремума различных переменных.

Подобные документы

  • Рассмотрение понятий: аргумента, области определения. Методика изучения линейной, квадратной и кубической функции. Изучение уравнений параболического типа. Основные характеристики математических функций. Достаточные условия экстремума уравнения.

    курсовая работа, добавлен 05.05.2015

  • Понятие и общая характеристика выпуклой функции, условия ее формирования и требования к неравенству. Теорема достаточного условия выпуклости и перегиба. Точка перегиба как точка экстремума первой производной. Определение производной данной функции.

    презентация, добавлен 21.09.2013

  • Эксперимент по нахождению экстремума методом крутого восхождения. Движение по градиенту – "крутое восхождение". Уточнение максимального значения функции отклика с помощью плана второго порядка. Нахождение интерполяционной функции (уравнения регрессии).

    курсовая работа, добавлен 31.05.2016

  • Использование в градиентных методах итерационной процедуры, вектор направления убывания функции. Безусловный минимум функции, поиск точки экстремума. Методы Ньютона, покоординатного и скорейшего спуска, градиента с постоянным и переменным шагом.

    презентация, добавлен 07.07.2015

  • Вычисление неопределенного интеграла. Изображение фигуры, ограниченной параболой и прямой, определение её площади. Исследование сходимости степенного ряда на концах интервала. Применение достаточного признака экстремума функции независимых переменных.

    контрольная работа, добавлен 07.04.2017

  • Понятие дифференциала функции как суммы произведений частных производных этой функции на приращения соответствующих независимых переменных. Особенности и суть условия дифференцируемости функции нескольких переменных и его математическое представление.

    презентация, добавлен 17.09.2013

  • Методологические принципы и алгоритмы оптимизации в ракурсе инженерного подхода. Модели задач оптимизации. Методы классического математического анализа исследования функций. Экстремумы функции одной и многих переменных. Метод множителей Лагранжа.

    контрольная работа, добавлен 20.01.2015

  • Определение и графическое изображение области допустимых значений заданной функции. Вычисление частных производных первого порядка, полного приращения и дифференциала функции. Механизма и основные этапы расчета наибольшего и наименьшего значения.

    контрольная работа, добавлен 25.02.2016

  • Понятие полного и частного приращения функции. Особенности определения частной производной функции нескольких переменных по одной из этих переменных. Сущность частных производных второго порядка. Математическое представление смешанных производных.

    презентация, добавлен 17.09.2013

  • Область определения функции двух переменных. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Скорость изменения функции в данном направлении. Взаимосвязь градиента и производной. Свойство касательной плоскости и нормаль к поверхности.

    презентация, добавлен 29.09.2017

  • Постановка задачи одномерной безусловной оптимизации. Алгоритм пассивного и активного поиска минимума. Методы поиска, основанные на аппроксимации целевой функции. Программная реализация сравнения методов оптимизации. Описание процесса отладки программы.

    диссертация, добавлен 19.06.2015

  • Исследование поведения функций одной переменной, построение графиков. Изучение порядка математических действий по отысканию локального экстремума. Поиск наибольших и наименьших значений непрерывной на отрезке функции. Точки пересечения с осями координат.

    лекция, добавлен 26.01.2014

  • Дифференциальные уравнения первого, второго и высших порядков. Ряды Тейлора и Маклорена. Евклидово пространство. Понятие функции нескольких переменных. Задачи оптимизации. Приложения определенного интеграла. Матрицы и действия с ними. Числовые ряды.

    учебное пособие, добавлен 15.09.2017

  • Методы одномерной безусловной оптимизации. Нахождение промежутка локализации точки минимума методом начального поиска промежутка. Итерационные методы решения задач безусловной оптимизации. Приведение задачи линейного программирования к каноническому виду.

    контрольная работа, добавлен 08.08.2009

  • Простейшая задача вариационного исчисления. Основные методы выведения уравнения Эйлера-Бернулли. Необходимые условия второго порядка для статистических задач в вариационном исчислении Лежандра. Условия Вейерштрасса для точки излома допустимой траектории.

    презентация, добавлен 21.08.2015

  • Основные понятия векторной алгебры, примеры решения задач. Вычисление производных тригонометрических функций. Нахождение точек экстремума, минимума и максимума функции, построение ее графика. Определение площади фигуры при помощи интегрирования.

    контрольная работа, добавлен 04.11.2012

  • Функция двух переменных – область определения, график. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Частные производные первого порядка. Производная по направлению и градиент. Касательная плоскость и нормаль к поверхности.

    презентация, добавлен 29.10.2017

  • Геометрическое изображение функции двух переменных. Частные производные, их свойства и геометрический смысл. Предел и непрерывность функции нескольких переменных, их функции. Применение дифференциала к приближенным вычислениям, сложным функциям.

    курс лекций, добавлен 23.10.2013

  • Построение графиков функции спроса и предложения, вычисление производных и приближенного значения числа через дифференциал функции. Определение экстремума, выгнутостей и вогнутостей функции. Вычисление интегралов и неоднородных линейных уравнений.

    контрольная работа, добавлен 16.04.2010

  • Основные понятия теории обыкновенных дифференциальных уравнений первого порядка. Достаточные условия существования и единственности решения задачи Коши. Метод последовательных приближений функции. Численные способы математического решения задачи Коши.

    дипломная работа, добавлен 06.03.2016

  • Интерпретация функции двух переменных на основе понятий дифференциального исчисления. Частные производные и дифференциал. Понятие производной по направлению. Градиент функции трех переменных. Уравнение касательной плоскости и нормали к поверхности.

    реферат, добавлен 04.05.2015

  • Исследование аналога второй краевой задачи для уравнения в частных производных с дискретным отклонением аргумента. Проведение доказательства разрешимости задачи методом разделения переменных. Условия, при которых задача имеет более одного решения.

    статья, добавлен 31.07.2018

  • Множество точек в пространстве. Изучение функции двух переменных и способов её задания в плоскости. Правила нахождения пределов для переменных. Сравнение бесконечно малых уравнений с разным количеством аргументов. Анализ свойств непрерывности функции.

    лекция, добавлен 26.01.2014

  • Аппроксимация данных заданной линейной зависимостью методом наименьших квадратов. Определение ее параметров. Нахождение точек экстремума функции с помощью метода множителей Лагранжа. Исследование функции на экстремум. Изменение диагонали прямоугольника.

    контрольная работа, добавлен 19.05.2015

  • Характеристика прямых методов безусловной минимизации многомерных задач: метода Хука-Дживса, Розенброка, циклического покоординатного спуска, сопряженных направлений Пауэлла. Изучение особенностей метода минимизаций функций по правильному симплексу.

    презентация, добавлен 09.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.