Основы математики

Применение правила Лопиталя к неопределенностям. Составление уравнения касательных к гиперболе. Исследование функции, нахождение экстремумов и построение ее графиков. Вычисление интеграла заменой переменных и с использованием формулы Ньютона-Лейбница.

Подобные документы

  • Решение системы линейных уравнений методом Гаусса, нахождение предела и производной функции. Составление уравнения касательных, схематичное построение графиков. Вычисление расширенной матрицы, определение промежутков знаков постоянства и экстремумов.

    контрольная работа, добавлен 21.10.2014

  • Исследование этапов вычисления определенных интегралов с помощью формулы Ньютона-Лейбница. Нахождение первообразной подынтегральной функции. Доказательство основной теоремы анализа. Характеристика операций дифференциального и интегрального исчислений.

    презентация, добавлен 18.09.2013

  • Рассмотрение природы интеграла. Особенности определения первообразной, дифференциала функции и основы специального способа выбора точек на частных отрезках разбиения при помощи интеграла Ньютона-Лейбница. Вычисление функции в интегральной сумме Римана.

    статья, добавлен 25.10.2016

  • Изучение формулы Ньютона-Лейбница и способа вычисления определенного интеграла с ее помощью. Вычисление площадей плоских фигур и длины дуги кривой. Приближенное вычисление определенного интеграла. Вычисление двойного интеграла в полярных координатах.

    курсовая работа, добавлен 13.11.2011

  • Вычисление пределов функций без использования правила Лопиталя. Нахождение производных функций с использованием формул и правил дифференцирования. Нахождение наибольшего и наименьшего значения функции на отрезке. Нахождение интервалов монотонности.

    контрольная работа, добавлен 06.01.2015

  • Вычисление неопределенных и определенных интегралов, предела функции по правилу Лопиталя. Составление уравнения касательной к кривой. Нахождение уравнения плоскости, проходящей через точки. Решение системы уравнений методами Гаусса и обратной матрицы.

    контрольная работа, добавлен 25.04.2017

  • Вычисление определенного и неопределенного интеграла с помощью формулы интегрирования по частям выражения. Нахождение площади фигуры, ограниченной линиями. Построение графика функций, нахождение точек пересечения. Пример расчета несобственного интеграла.

    задача, добавлен 09.06.2014

  • Понятие первообразной функции и неопределенного интеграла. Правила интегрирования. Площадь криволинейной трапеции. Формула Ньютона-Лейбница и первообразная функция. Вычисление площади области. Формулы вычисления. Площадь фигуры, ограниченная параболой.

    лекция, добавлен 26.07.2015

  • Построение графика функции спроса и предложения, нахождение координаты точки равновесия. Вычисление производных. Исследование и построение графика данной функции. Вычисление неопределенного интеграла. Установление расходимости несобственного интеграла.

    контрольная работа, добавлен 21.10.2010

  • Знакомство с основными этапами составления уравнений касательных. Общая характеристика способов нахождения экстремумов и интервалов монотонности функции. Рассмотрение особенностей вычисления определенного интеграла и площади фигуры, ограниченной линиями.

    контрольная работа, добавлен 23.04.2013

  • Определение корней уравнения, уточнение их с применением графических методов хорд и касательных Ньютона и простых итераций. Составление таблиц приближенных значений интеграла дифференциального уравнения с использованием методов Эйлера-Коши и Рунге-Кутта.

    контрольная работа, добавлен 21.09.2016

  • Понятие определенного интеграла, применение формулы Ньютона-Лейбница при его вычислении. Использование метода замены переменной. Определение пределов интегрирования, правила перестановки. Свойства аддитивности и линейности. Классы интегрируемых функций.

    лекция, добавлен 03.05.2016

  • Установление точек разрыва функции, составление уравнения асимптот. Поиск координат вершины параболы. Определение условий существования экстремума в стационарной точке. Поиск интеграла по формуле Ньютона-Лейбница. Решение дифференциального уравнения.

    контрольная работа, добавлен 25.03.2014

  • Формула Ньютона-Лейбница как один из ключевых элементов математического анализа и основа для интегрального исчисления. Характеристика теоремы о среднем значении для определенного интеграла. Определение производной как предела разностного отношения.

    доклад, добавлен 02.11.2014

  • Нахождение корней трансцендентных и нелинейных уравнений комбинированным методом, методами хорд и касательных. Формулы для уточнения корня уравнения. Построение графика функции, графиков первой и второй производной. Графический метод отделения корней.

    лабораторная работа, добавлен 07.12.2012

  • Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.

    методичка, добавлен 27.10.2013

  • Равномерное стремление к предельной функции. Дифференцирование под знаком интеграла. Случай, когда пределы интеграла зависят от параметра. Применение правила Лейбница к вычислению производной по параметру интеграла. Исследование функции на непрерывность.

    контрольная работа, добавлен 13.10.2013

  • Построение в прямоугольной системе координат заданного треугольника. Нахождение внутреннего угла треугольника. Составление уравнения медианы и уравнения высоты. Вычисление производных заданных функций. Исследование заданных функций, построение графика.

    контрольная работа, добавлен 19.10.2012

  • Вычисление пределов и производных логарифмических функций, применение правила дифференцирования суммы. Построение графика функции, нахождение горизонтальных и наклонных асимптот. Вычисление неопределенных интегралов и дифференциального уравнения.

    контрольная работа, добавлен 19.04.2016

  • Вычисление предела функции. Составление уравнения касательных, перпендикулярных прямой, проходящей через заданные точки, к графику функции. Нахождение неопределенного и определенного интегралов. Расчет площади криволинейной трапеции, ограниченной линиями.

    контрольная работа, добавлен 21.09.2013

  • Понятие определенного интеграла. Описание классов интегрируемых функций. Анализ свойств определенного интеграла и методов его вычисления. Примеры вычисления интеграла при помощи формулы Ньютона–Лейбница, замены переменной, интегрирования по частям.

    конспект урока, добавлен 18.04.2016

  • Построение гамма-функции, отталкиваясь от функционального уравнения. Основные свойства гамма-функции и ее использование (вычисление эйлерова интеграла первого рода, или бета-функции). Асимптотическое поведение гамма-функции и получение формулы Стирлинга.

    курсовая работа, добавлен 22.04.2011

  • Нахождение (вычисление) интегралов. Вычисление площади фигуры, ограниченной графиками функций, с использованием свойств определенного интеграла. Использование признаков сходимости рядов. Решение дифференциального уравнения при заданных начальных условиях.

    контрольная работа, добавлен 07.11.2018

  • Решение уравнения и построение его на комплексной плоскости. Определение точек разрыва функции и указание характера точек разрыва. Нахождение производных функций. Расчет экстремумов функции с использованием второй производной. Разложение функции в ряд.

    контрольная работа, добавлен 22.04.2018

  • Применение правила Лопиталя, пример нахождения асимптоты функции. Понятие точки глобального экстремума, формула её расчета. Вычисление локального экстремума и построение эскиза графика функции, её исследование на монотонность. Дифференциальное исчисление.

    контрольная работа, добавлен 16.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.