Дискретная математика для программистов
Определение булевых функций. Замкнутые классы, теорема Поста. Моделирование релейно-контактных схем и сумматоров. Основные положения математической логики. Неформальное определение алгоритма. Конечные автоматы и некоторые классические алгоритмы.
Подобные документы
- 101. Теорема Пифагора
Исследование значения теоремы Пифагора в геометрии. Характеристика классических доказательств теоремы Пифагора, известных из древних трактатов. Определение стороны прямоугольного треугольника по двум другим сторонам. Теорема существования площади фигуры.
реферат, добавлен 21.01.2015 Изучение построения фундамента для математики в XX в. Понятие истинности в математике, абсолютизация человеческих представлений о реальном мире. Формализация математической логики. Эквивалентность интуитивных и формальных доказательств в тезисе Гильберта.
реферат, добавлен 28.10.2018Элементы теории графов и комбинаторики. Использование в доказательстве теоремы Кэли. Разбиение и композиции натуральных чисел. Изучение работ венгерского математика Кенинга в 30-е годы XX столетия по математической дисциплине теории графов и элементов.
курсовая работа, добавлен 23.12.2020Генетические алгоритмы для поиска экстремума многоэкстремальных функций. Методы генерации начальной популяции. Инициализация популяции на основе закона распределения. Одно- и многоэкстремальные функции. Досрочное прерывание генетического алгоритма.
статья, добавлен 30.05.2018- 105. Конечные автоматы
Понятие и модель абстрактного автомата, общая характеристика, структура и взаимодействие элементов. Типы конечных автоматов и их отличительные особенности, функции. Эквивалентность состояний детерминированного автомата, алгоритм его минимизации.
курсовая работа, добавлен 09.01.2012 Теорема о вычетах является мощным инструментом для вычисления интеграла функции по замкнутому контуру. Рассмотрены определение вычета функции, основная теорема о вычетах, вычисление вычета относительно полюса, вычет функции относительно бесконечности.
реферат, добавлен 30.11.2023Анализ понятия символической логики (математической, теоретической): происхождение, развитие и свойства. Буквенные обозначения для переменных, а также идея построения универсального языка для всей математики. Основы современной логической символики.
доклад, добавлен 27.12.2010- 108. Джордж Буль
Краткая биографическая справка о жизни английского математика, логика, профессора колледжа Корка и одного из основателей математической логики - Д. Буля. История создания булевой алгебры и ее влияние на развитие современной вычислительной техники.
реферат, добавлен 20.10.2015 - 109. Теорема Пифагора
Первые учителя Пифагора. Учреждение пифагорейской школы. Идеалистическое учение в античной философии. Числа у пифагорейцев. Открытие теоремы Пифагором. Классические доказательства теоремы Пифагора. Математические трактаты Древнего Китая и Древней Индии.
реферат, добавлен 09.12.2011 Формулировки определений и теорем. Преобразование алгебраических и тригонометрических выражений в технике дифференцирования и интегрирования. Элементы эвристики по Пойа в доказательствах теорем и решениях задач геометрии и математического анализа.
статья, добавлен 09.11.2018Математика как наука о количественных отношениях и пространственных формах действительного мира. Ее роль в современном обществе и этапы развития. Основы построения математической теории. Вклад Ньютона в создание физико-математического естествознания.
реферат, добавлен 03.06.2010Основные элементы алгебры логики. Характеристика синтеза логических схем на основе программы National Instruments и NI ELVIS II. Анализ комбинационных и последовательностных устройств. Представление логических функций математическими выражениями.
лабораторная работа, добавлен 21.11.2017Определение и анализ сущности комплементарной логики, которая создаётся путём синтеза экстенсиональной и интенсиональной логики. Характеристика особенностей интерпретации редукции волновой функции на основе принципа психофизического параллелизма.
статья, добавлен 25.12.2021История эллинских поселений и создание единой математической науки в Элладе. Первые философские системы Малой Азии. Жизненный путь и научные открытия основателя милетской школы Фалеса Милетского. Афоризмы Фалеса и теорема о параллельности прямых.
реферат, добавлен 23.04.2010Уравнения Фредгольма 1-го и 2-го рода. Конечные и бесконечные пределы интегрирования. Однородное интегральное уравнение Вольтера. Понятие метрического пространства. Принцип сжатых отображений. Теорема Банаха и решение интегральных уравнений 2-го рода.
курсовая работа, добавлен 22.04.2011Разработка математической модели гидромеханической схемы методом прямой аналогии. Составление схемы гидромеханической системы. Составление системы дифференциальных уравнений по эквивалентной схеме. Определение основных параметров математической модели.
курсовая работа, добавлен 11.11.2017Анализ схемы, реализующей логическое отрицание. Особенность инверсии дизъюнкции и конъюнкции в алгебре логики. Характеристика функций Шеффера и Пирса. Формирование законов склеивания и поглощения. Основные приоритеты выполнения последовательных операций.
лабораторная работа, добавлен 03.03.2015Особенности метода математической индукции, его широкое применение при доказательстве теорем, тождеств, неравенств, к суммированию рядов, геометрическим задачам и задачам на делимость натуральных чисел. Примеры применения метода математической индукции.
реферат, добавлен 15.12.2011- 119. Основы математики
Множества и операции над ними. Декартово произведение множеств. Понятие и свойства алгоритма. Аксиоматический метод. Понятие о комбинаторной задаче. Математические утверждения и их структура. Основы математической логики. Соответствия и отношения.
курс лекций, добавлен 25.09.2017 Основные понятия алгебраической логики. Проведение отрицания, конъюнкции, дизъюнкции, импликации и эквиваленции над высказываниями. Перевод текстов на язык предикатов, определение их истинности. Этапы формирования законов логики в трудах Аристотеля.
контрольная работа, добавлен 01.02.2012- 121. Высшая математика
Определение функции нескольких переменных. Дифференциальные уравнения первого и высших порядков. Основные теоремы операционного исчисления (преобразования Лапласа). Числовые и знакоположительные ряды. Разложение в ряд Фурье четных и нечетных функций.
курс лекций, добавлен 18.02.2012 Теория множеств. Способы задания, операции над множествами. Основные понятия соответствия и функции. Понятие мультимножества. Основные понятия теории графов, способы их задания. Сильно связанные графы и их компоненты. Планарность и двойственность.
учебное пособие, добавлен 08.02.2015Предмет, определение, понятия и основные теоремы теории вероятности. Формулы комбинаторики, Байеса, Бернулли и полной вероятности. Классификация событий и операции над ними. Определение вероятности случайного события и повторных независимых испытаний.
контрольная работа, добавлен 01.04.2016Определение булевой алгебры (алгебры логики, алгебры суждений) – раздела математики, в котором изучаются логические операции над высказываниями. Характеристика логических операций: отрицания, конъюнкции, дизъюнкции, импликации, а также эквиваленции.
презентация, добавлен 06.02.2020Аналитическая и дифференциальная геометрия. Исследования Гаусса по неевклидовой геометрии. Обобщения теоремы Эйлера о многогранниках. Развитие концепции комплексного числа. Последовательности и ряды аналитических функций. Интегральная теорема Коши.
книга, добавлен 25.11.2013