Введение в вычислительную математику

Нахождение погрешности на примере арифметических операций и вычисления значений функции. Постановка задачи и применение интерполирования путем разбора интерполяционной схемы Эйткена, интерполяционной формулы Гаусса, многочлена Лагранжа, Ньютона и Эрмита.

Подобные документы

  • Понятие степенного ряда и области его сходимости. Введение функций С(x) и S(x), формулы их сложения и вывод основных свойств. Тригонометрические функции как решения системы двух дифференциальных уравнений первого порядка. Применение рекуррентных формул.

    курсовая работа, добавлен 09.03.2012

  • Использование итерации в прикладной математике. Выполнение арифметических операций над переменными с плавающей точкой на компьютере. Преобразования матрицы чисел прямым и обратным ходом Гаусса. Решения линейных систем уравнений методом квадратного корня.

    лабораторная работа, добавлен 21.03.2014

  • Изучение формулы Ньютона-Лейбница и способа вычисления определенного интеграла с ее помощью. Вычисление площадей плоских фигур и длины дуги кривой. Приближенное вычисление определенного интеграла. Вычисление двойного интеграла в полярных координатах.

    курсовая работа, добавлен 13.11.2011

  • Осуществление приближенных вычислений с помощью полного дифференциала функции одной и двух переменных. Вычисление приближенно, заменяя приращения функции ее дифференциалом. Приведение формул нахождения абсолютной и относительной погрешности вычислений.

    контрольная работа, добавлен 09.04.2015

  • Интегральная сумма для криволинейного интеграла. Порядок ее вычисления путем замены в подынтегральном выражении переменных Х и У через параметр, представление дифференциала дуги dS как функции параметра. Примеры вычисления криволинейных интегралов.

    презентация, добавлен 17.09.2013

  • Общая характеристика метода Ньютона, знакомство с особенностями применения. Анализ способов записи формального представления по формуле Тейлора, основные проблемы. Рассмотрение процесса вычисления приближенного значения корня, использование выражений.

    лабораторная работа, добавлен 02.10.2013

  • Свойства и методы вычисления Эйлерова интеграла первого рода, его функции. Особенности вычисления Эйлерова интеграла второго рода. Применение правила Лейбница. Особенности вычисления интеграла Раабе. Использование метода математической индукции.

    контрольная работа, добавлен 03.06.2012

  • Обоснование роли и значения обратных задач в математическом моделировании. Исследование этапов возникновения и развития теории об арифметических заданиях с известными искомыми величинами. Рассмотрение способов вычисления дифференциальных уравнений.

    статья, добавлен 27.03.2016

  • Достижения Ньютона в математике: нахождение путем общего разложения бинома с произвольным показателем степени, разработка метода флюксий для анализа бесконечно малых величин. Изложение в журнале "Труды ученых" Лейбницем основ дифференциального исчисления.

    реферат, добавлен 30.06.2011

  • Свойства производственных функций и функций затрат. Эластичность как локальная характеристика, изменение ее значений. Обсуждение затрат длительного периода, использование функции Лагранжа. Полная эластичность линейно-однородной производственной функции.

    лекция, добавлен 30.01.2017

  • Интерполяционная формула Лагранжа и Ньютона. Разработка математического обеспечения. Аналитическое выражение функции f(x). Функциональная зависимость между величинами y и x, описывающая количественную сторону данного явления. Теория приближения функций.

    контрольная работа, добавлен 13.01.2013

  • Задача вычисления интегралов. Дополнительный член в формуле прямоугольников. Вычисление определенных интегралов по формуле прямоугольников. Использование формулы Ньютона-Лейбница. Определение площади криволинейной фигуры. Формула среднего значения.

    контрольная работа, добавлен 18.12.2012

  • Основные свойства операции дифференцирования. Производные и дифференциалы высших порядков. Понятия интерполяции и аппроксимации. Интерполяционные формулы Ньютона при равноотстоящих узлах. Использование квадратурных формул для численного интегрирования.

    статья, добавлен 09.05.2021

  • Построение решения дифференциального уравнения. Подбор многочлена, описывающего полученное решение. Определение корней многочлена на полученном интервале. Алгоритм вычислений для классического метода Рунге-Кутта. Интерполяция функции на данном интервале.

    курсовая работа, добавлен 07.08.2013

  • Особенности вычисления предела функции, когда оба аргумента стремятся к нулю. Сущность решения задачи по определению пределов функции одной переменной, его отличие от задачи с двумя переменными и математическое представление результатов расчетов.

    презентация, добавлен 17.09.2013

  • Определение корней уравнения, уточнение их с применением графических методов хорд и касательных Ньютона и простых итераций. Составление таблиц приближенных значений интеграла дифференциального уравнения с использованием методов Эйлера-Коши и Рунге-Кутта.

    контрольная работа, добавлен 21.09.2016

  • Формула Ньютона-Лейбница как один из ключевых элементов математического анализа и основа для интегрального исчисления. Характеристика теоремы о среднем значении для определенного интеграла. Определение производной как предела разностного отношения.

    доклад, добавлен 02.11.2014

  • Применение бинома Ньютона при доказательстве теоремы Ферма, в теории бесконечных рядов и выводе задачи Ньютона-Лейбница. Использование биномиальных коэффициентов при решении заданий. Суть формул сжатого умножения для квадрата и куба суммы двух слагаемых.

    конспект урока, добавлен 03.02.2018

  • Определение дифференциала функции, его геометрический смысл и параметры. Инвариантность формы дифференциала, его применение в приближенных вычислениях. Локальный экстремум, теоремы Ферма, Ролля, Лагранжа и Коши, их сущность, доказательства и применение.

    лекция, добавлен 07.07.2015

  • Застосування методу Ньютона для системи двох нелінійних рівнянь. Чисельне розв’язування інтегральних рівнянь: розв’язування рівнянь Фредгольма методом кінцевих сум. Інтерполяційні формули Гаусса, Стірлінга, Бесселя. Квадратурні формули Чебишева та Гаусса.

    контрольная работа, добавлен 15.01.2020

  • Доказательство формулы для определителя Грама и Леммы Накаямы. Решение системы линейных уравнений с ненулевым определителем основной матрицы. Ее запись в матричном виде. Реализация метода Крамера со сложностью, сравнимой со сложностью метода Гаусса.

    доклад, добавлен 11.12.2017

  • Нахождение производной функции, заданной явно, неявно или параметрически. Порядок исследования функции и построение ее графика. Методика вычисления интегралов. Частное решение дифференциального уравнения 1-го порядка. Изменение порядка интегрирования.

    контрольная работа, добавлен 18.03.2012

  • Изучение особенностей операций над множествами. Характеристика метода математической индукции. Рассмотрение аспектов применения бинома Ньютона. Анализ способ решения примером с комплексными числами и пределами. Методы вычисления производной и интеграла.

    учебное пособие, добавлен 08.11.2013

  • Применение формул Эйлера, Гаусса и Куммера для гипергеометрической функции. Свойства "золотого сечения", его роль в математике и в теории чисел. Доказательство лемм с помощью схемы Чудновского-Хаты для нахождения числового значения "золотого сечения".

    статья, добавлен 27.05.2018

  • Сущность теоремы как математической формулы, выражающей поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью. Последовательность доказательства теоремы Гаусса-Остроградского.

    презентация, добавлен 17.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.