Линейная однофакторная регрессия

Применение линейного регрессионного анализа для ситуаций с одной зависимой и одной независимой переменной. Проверка соблюдения необходимых условий для применения анализа линейной однофакторной регрессии. Построение точек на графике прямой регрессии.

Подобные документы

  • Параметры уравнения регрессии и корреляционного значения. Анализ точности определения оценок коэффициентов регрессии. Расчет показателя тесноты связи и значимости коэффициента корреляции. Нахождение уравнения линейной регрессии из системы уравнений.

    контрольная работа, добавлен 15.05.2017

  • Построение линейного уравнения парной регрессии. Расчет линейного коэффициента парной корреляции. Оценка статистической значимости уравнения регрессии. Расчет матрицы парных коэффициентов корреляции. Построение поля корреляции результативного признака.

    контрольная работа, добавлен 01.03.2017

  • Основные положения регрессионного анализа. Классическая нормальная линейная модель множественной регрессии. Сущность метода наименьших квадратов. Теорема Гаусса-Маркова. Коэффициенты детерминации. Понятия мультиколлинеарности и частной корреляции.

    курсовая работа, добавлен 29.04.2014

  • Показательный тренд. Построение регрессии. Дисперсионный анализ для линейной регрессии. Доверительные интервалы для оцененных параметров. Критерий Фишера значимости всей регрессии. Колеблемость признака. Моделирование сезонности ВВП. Индексный анализ.

    курсовая работа, добавлен 21.08.2008

  • Нормальная линейная модель парной регрессии. Альтернативный метод нахождения параметров уравнения парной регрессии, построение точечного и интервального прогноза. Классический, обобщенный и доступный метод наименьших квадратов, программная реализация.

    курсовая работа, добавлен 17.04.2010

  • Построение однофакторного уравнения линейной регрессии зависимости производительности труда рабочего (y) от стажа работы x. Определение коэффициента эластичности. Экономическая интерпретация коэффициента регрессии и коэффициента эластичности труда.

    контрольная работа, добавлен 21.12.2019

  • Проведение методом линейной множественной регрессии идентификации модели, ее верификация. Оценка статистической значимости коэффициентов В0, В1, В2 с помощью t-статистики Стьюдента. Проверка наличия автокорреляции отклонений с помощью статистики Уотсона.

    контрольная работа, добавлен 08.09.2014

  • Основной расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Анализ оценки статистической значимости параметров регрессии с помощью критерия Фишера и Стьюдента. Характеристика верхней и нижней границ доверительных интервалов.

    задача, добавлен 20.06.2016

  • Уравнение зависимости объема предложения блага от цены этого блага и зарплаты сотрудников фирмы. Линейная модель множественной регрессии данных, расчёт автокорреляции остатков с помощью теста Дарбина-Уотсона. Уравнение регрессии с фиктивными переменными.

    контрольная работа, добавлен 27.04.2013

  • Методы расчета линейного коэффициента парной корреляции. Оценка статистической значимости коэффициентов множественного уравнения регрессии с помощью критерия Стьюдента. Проверка системы эконометрических уравнений на необходимое условие идентификации.

    контрольная работа, добавлен 12.12.2015

  • Построение модели парной линейной регрессии, описывающей зависимость среднедушевых денежных расходов за месяц от среднемесячной начисленной заработной платы на человека. Расчет коэффициентов корреляции и детерминации. Анализ средней ошибки аппроксимации.

    контрольная работа, добавлен 19.05.2012

  • Методы расчета параметров выборочного уравнения линейной регрессии с помощью метода наименьших квадратов. Оценка статистической значимости коэффициента корреляции, используя критерий Стьюдента. Анализ тесноты связи с помощью показателя детерминации.

    учебное пособие, добавлен 13.01.2016

  • Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.

    лабораторная работа, добавлен 05.09.2013

  • Построение уравнения парной регрессии. Расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Оценка статической значимости параметров регрессии и корреляции. Прогноз зарплаты в зависимости от значения прожиточного минимума.

    задача, добавлен 27.09.2016

  • Методика построения точечной диаграммы и линии регрессии в программном приложении Microsoft Excel. Определение стандартного отклонения выборки и коэффициента корреляции. Порядок выполнения проверки соответствия остатков нормальному распределению.

    лабораторная работа, добавлен 02.01.2022

  • Анализ и прогнозирование объемов грузовых автомобильных перевозок в регионах Южного федерального округа. Нечеткая линейная регрессия в определении веса соответствующего фактора в исследуемом региональном транспортном показателе каждого региона округа.

    статья, добавлен 01.11.2021

  • Комплексное изучение основных возможностей пакета STATISTICA при осуществлении множественного регрессионного анализа. Нахождение уравнения множественной регрессии. Определение параметров модели. Проверка выполнения предпосылок метода наименьших квадратов.

    лабораторная работа, добавлен 06.02.2015

  • Исследование взаимосвязи энерговооруженности и выпуска готовой продукции. Построение графиков практической и теоретической линии регрессии. Измерение тесноты связи. Проверка информации на нормальность распределения. Определение коэффициента корреляции.

    контрольная работа, добавлен 30.06.2014

  • Линейная модель парной регрессии и корреляции. Проверка существенности факторов и показатели качества регрессии. Методы оценки структурной формы модели. Автокорреляция уровней временного ряда. Моделирование сезонных колебаний, критерий Дарбина-Уотсона.

    курс лекций, добавлен 27.11.2013

  • Назначение множественной регрессии. Коэффициент корреляции между двумя векторами. Определение наилучшего уравнения регрессии. Оценка параметров нулевого уравнения регрессии. Оптимальное количество независимых переменных. Использование метода включения.

    курсовая работа, добавлен 23.11.2013

  • Основные демографические показатели Белгородской области за период с 2004 по 2017 год. Главная особенность построения уравнения множественной регрессии. Реализация проверки адекватности построенного уравнения регрессии с помощью F-критерия Фишера.

    статья, добавлен 23.01.2019

  • Практика расчета параметров уравнения парной линейной регрессии. Оценка тесноты связи с помощью показателей корреляции через t-критерий Стьюдента и детерминации, статистической надежности результатов регрессионного анализа с помощью F-критерия Фишера.

    контрольная работа, добавлен 14.11.2011

  • Статистические и математические функции Excel: модели линейной регрессии с двумя коэффициентами, полиномиальная регрессия. Построение экспоненциальной линии тренда путем расчета точек методом наименьших квадратов. Дисконтированный период окупаемости.

    контрольная работа, добавлен 10.11.2012

  • Построение однофакторной модели регрессии. Анализ влияния фактора на зависимую переменную по модели с помощью коэффициентов детерминации, множественной корреляции, частных коэффициентов эластичности, а также степени линейной связи между переменными.

    контрольная работа, добавлен 27.04.2011

  • Порядок вычисления параметров и построения поля корреляции и эмпирической линии регрессии. Расчет значимости коэффициентов регрессии с помощью t-статистики Стьюдента, определение доверительных интервалов, коэффициентов детерминации и корреляции.

    контрольная работа, добавлен 27.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.