Линейная алгебра

Матрица и определители. Применение способа разложения по элементам столбца (строчки). Алгебраические дополнение элемента матрицы. Решение системы линейных уравнений. Составление общего уравнения плоскости, проходящей через точку перпендикулярно вектору.

Подобные документы

  • Матрица и её основные свойства, ранг, определитель и способы его поиска, обратная матрица. Решение системы линейных уравнений по формулам Крамера. Использование матрицы в решении системы уравнений и определении длины вектора, поиск базисных решений.

    контрольная работа, добавлен 27.11.2015

  • Сферы применения общего уравнения Риккати. Мультипликативный интеграл, вычисленный из матрицы коэффициентов как фундаментальное решение системы дифференциальных уравнений. Анализ условий, согласно которым матрица является функционально коммутативной.

    статья, добавлен 03.03.2018

  • Решение квадратной системы линейных уравнений. Использование матричного вида формулы Крамера. Метод последовательных исключений Жордана-Гаусса, элементарные преобразования над строками и перестановка столбцов матрицы. Определение фундаментальной системы.

    лекция, добавлен 09.09.2017

  • Определение периметра и площади треугольника, длины ребра, объем, уравнения плоскости пирамиды по координатам вершин данных фигур. Приведение уравнения кривой второго порядка к каноническому виду. Решение системы линейных уравнений с тремя неизвестными.

    контрольная работа, добавлен 15.11.2013

  • Основные виды матриц. Обратная матрица, алгоритм нахождения, матричные уравнения. Основные теоремы о ранге матрицы. Минор, алгебраическое дополнение. Балансовая модель Леонтьева. Векторы на плоскости и в пространстве. Скалярное произведение векторов.

    шпаргалка, добавлен 18.03.2013

  • Общее понятие матрицы, ее разновидности. Определители n-го порядка и их основные свойства. Алгебраические дополнения и миноры. Способ получения обратной матрицы, ее транспонирование. Алгоритм нахождения ранга матрицы. Виды операций над матрицами.

    контрольная работа, добавлен 21.05.2013

  • Действия со скалярными и векторными величинами. Уравнение прямой линии на плоскости и плоскости в пространстве. Изучение матриц и операции над ними, составление систем линейных уравнений. Понятие функции и предел числовой последовательности, производная.

    курс лекций, добавлен 06.11.2009

  • Характеристика матрицы как прямоугольной таблицы чисел, содержащей m строк одинаковой длины (или n столбцов одинаковой длины). Операции над матрицами. Системы линейных алгебраических уравнений. Обратная матрица и ее применение к решению линейных систем.

    курсовая работа, добавлен 17.11.2019

  • Уравнение высоты треугольника, тангенс угла между диагоналями параллелограмма. Уравнение плоскости, проходящей через заданную точку параллельно плоскости. Канонические уравнения прямой. Координаты точки пересечения прямой. Геометрическое место точек.

    контрольная работа, добавлен 14.03.2016

  • Частные случаи уравнений плоскости. Сущность параметрического и канонического уравнения, взаимное расположение прямых. Нормальное уравнение плоскости, специальные виды уравнений. Решение уравнений с направляющим вектором. Пример общего уравнения прямой.

    презентация, добавлен 21.09.2017

  • Система линейных алгебраических уравнений: однородная, квадратная, совместная и несовместная. Матричная форма системы линейных уравнений. Эквивалентные системы линейных уравнений. Элементарные преобразования матрицы. Особенности теоремы Кронекера-Капелли.

    контрольная работа, добавлен 24.12.2014

  • Различные способы решения систем линейных уравнений для применения их на практике. Основные понятия матрицы и действия над ними. Метод Гаусса решения общей системы линейных уравнений. Правило Крамера, система n линейных уравнений с n неизвестными.

    реферат, добавлен 06.03.2010

  • Фундаментальная система решений и общее решение однородной системы уравнения. Система n линейных уравнений с n неизвестными. Правило Крамера. Однородная система n линейных уравнений, с n неизвестными. Метод Гаусса. Матричный вид системы уравнений.

    контрольная работа, добавлен 06.08.2013

  • Матрицы и действия над ними. Система n линейных уравнений с n неизвестными. Правило Крамера. Использование метода Гаусса решения общей. Критерий совместности общей. Решение систем линейных уравнений на экзаменах в различных математических вузах.

    реферат, добавлен 02.02.2022

  • Решение уравнений в школьной программе. Потребность в комплексных числах. Извлечение корней, понятие квадратных уравнений. Преобразование кубичных уравнений. Решение уравнений в радикалах и существование корней уравнений. Приближённое решение уравнений.

    презентация, добавлен 06.12.2011

  • Применение матриц в математике и физике для компактной записи и решения систем линейных алгебраических уравнений и систем дифференциальных уравнений. Определение матричного уравнения для миграции. Запись экономических закономерностей с помощью вектора.

    практическая работа, добавлен 12.12.2019

  • Биография создателя линейной алгебры Г. Крамера. Основные понятия матрицы и действия над ними. Описание системы линейных уравнений и её решение. Вектор как геометрическая абстракция для объектов, характеризующихся одновременно величиной и направлением.

    доклад, добавлен 20.05.2016

  • Аналитическое решение алгебраического уравнения n–ой степени (в радикалах). Примеры решения проблем собственных значений для нахождения функций от матриц и устойчивости линейных дифференциальных и разностных уравнений. Свойства доминирующего корня.

    научная работа, добавлен 22.07.2014

  • Пример решения линейных алгебраических уравнений в матричной форме с использованием различных подходов и команды приложения. Вычисление определителя по формулам Крамера и методом Гаусса. Вычисление матрицы системы, ее приведение ступенчатому виду.

    лабораторная работа, добавлен 08.06.2015

  • Решение системы трех линейных уравнений методами Крамера и Гаусса с помощью определителей и преобразования матриц. Вычисление длины ребра, угла между ребрами, площади грани, уравнения плоскости и объёма пирамиды по заданным координатам её вершин.

    контрольная работа, добавлен 22.08.2014

  • Анализ понятия матрицы: классификация и основные операции над ними. Определители квадратной матрицы и их свойства. Теоремы Лапласа и аннулирования. Обратная матрица: определение понятий, ее единственность, а также алгоритм ее построения и свойства.

    курсовая работа, добавлен 21.04.2011

  • Вычисление определителя матрицы. Нахождение обратной матрицы, выполнение проверки. Решение системы линейных уравнений методом обратных матриц и методом Гаусса. Приведение расширенной матрицы к треугольному виду. Расчет координат нормального вектора.

    контрольная работа, добавлен 11.12.2012

  • Изучение формул вычисления определителей второго и третьего порядков. Применение методов Крамера и Гаусса для решения систем линейных уравнений. Аналитическая геометрия на плоскости и в пространстве. Представление комплексных чисел и операции над ними.

    тест, добавлен 06.09.2017

  • Решение математической задачи методом Гаусса, с выбором главного элемента. Расчеты линейных алгебраических уравнений по Гауссу-Жордано, Зейделю с заданной точностью и простыми итерациями. Вычисление определителя системы. Нахождение обратной матрицы.

    задача, добавлен 22.06.2015

  • Понятия линейной алгебры и матричного множества. Определители квадратных матриц второго, третьего и высших порядков. Правило Крамера для решения систем линейных уравнений первой степени. Ортогональные функции как базис функционального пространства.

    реферат, добавлен 30.05.2022

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.