Решение системы нелинейных дифференциальных уравнений в частных производных первого порядка со многими переменными

Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".

Подобные документы

  • Теорема о существовании единственности решения дифференциальных уравнений различных порядка с разделяющимися переменными. Решение систем с постоянными коэффициентами. Линейно независимые и зависимые системы функций. Определитель Вронского и его свойства.

    курс лекций, добавлен 30.07.2017

  • Характеристика и обоснование преимуществ метода численного интегрирования обыкновенных дифференциальных уравнений, разработанного Эверхартом. Исследование алгоритма и основной идеи построения метода Эверхарта на примере решения уравнений разных видов.

    статья, добавлен 03.03.2018

  • Свойства систем дифференциальных уравнений. Исследование предельного множества траекторий. Траектории линейных систем на плоскости. Линейные однородные системы с периодическими коэффициентам. Устойчивость решений систем дифференциальных уравнений.

    курсовая работа, добавлен 26.11.2014

  • Разностные методы решения краевых задач для уравнений в частных производных. Методы решения сеточных уравнений - специфическая система линейных алгебраических уравнений. Аппроксимация. Теорема о сходимости разностной схемы. Метод верхней релаксации.

    курсовая работа, добавлен 06.05.2015

  • Сведение краевой задачи к задаче Коши. Поиск параметрического семейства решений для системы уравнений. Понятие уравнения "сшивания". Метод стрельбы для нормальной системы обыкновенных дифференциальных уравнений. Геометрическая интерпретация метода.

    курсовая работа, добавлен 22.04.2011

  • Решение нелинейных уравнений с одной переменной с использованием численных методов: метода итерации и комбинированного метода. Отделение корней заданного уравнения графическим методом, их уточнение численными методами. Расчет количества итераций.

    контрольная работа, добавлен 14.12.2014

  • Решение задачи идентификации функции источника одномерной системы параболического и эллиптического уравнений в частных производных второго порядка. Исследование задачи Коши, второй краевой и обратных задач для эволюционных систем составного типа.

    статья, добавлен 29.04.2018

  • Предложение эффективного численного метода решения линейных краевых задач для обыкновенных дифференциальных уравнений второго порядка. Изложение свойстве составной кинематической кривой. Рассмотрение примеров решения краевых задач линейного уравнения.

    статья, добавлен 27.05.2018

  • Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.

    курсовая работа, добавлен 11.06.2014

  • Обыкновенное дифференциальное уравнение первого порядка, его решение. Геометрическое истолкование дифференциального уравнения. Теорема существования и единственности. Характер поведения интегральных линий системы уравнений в окрестности особой точки.

    курс лекций, добавлен 28.10.2012

  • Сущность и особенности оптимальных итерационных процессов. Характеристика итерационных методов первого и второго порядка. Использование итерационных методов линейных алгебраических уравнений. Решение систем нелинейных уравнений, методы уточнения корней.

    дипломная работа, добавлен 06.10.2017

  • Рассмотрение линейных дифференциальных уравнений первого порядка. Методы вариации постоянной, использование интегрирующего множителя. Порядок приведения уравнения Риккати к формуле Бернулли. Выявление проблем в применении дифференциального исчисления.

    курсовая работа, добавлен 16.12.2014

  • Решение обыкновенных дифференциальных уравнений с заданными условиями на границах интервала и в заданных точках. Метод конечных разностей. Геометрический смысл производной. Метод прогонки, реализующий прямой и обратный ход. Выравнивание системы в столбец.

    лекция, добавлен 06.04.2014

  • Численное решение дифференциальных уравнений как интерактивный процесс взаимодействия человека или неформальных и формальных процедур по поиску аналитического описания интегральной кривой или ее вида. Традиционный и нетрадиционный процесс решения дифур.

    статья, добавлен 25.08.2020

  • Наличие высокого порядка аппроксимирующих формул - одна из наиболее специфических особенностей современных численных алгоритмов решения задачи Коши. Характеристика и методика расчета явных экстраполяционных уравнений Адамса-Башфорта третьего порядка.

    курсовая работа, добавлен 27.11.2017

  • Характеристика квазилинейных уравнений второго порядка. Разработка программы по исследованию уравнений. Составление функции, с помощью которой можно будет определить наличие предельного цикла в уравнении, периода одного полного цикла. Тестирование ПО.

    дипломная работа, добавлен 14.12.2019

  • Методика определения максимального показателя Ляпунова решений системы дифференциальных уравнений. Анализ основных условий, которые гарантируют экспоненциальную устойчивость системы для любых нелинейных характеристик, лежащих в допустимых пределах.

    статья, добавлен 30.10.2016

  • Системы дифференциальных уравнений. Непрерывно дифференцируемые или абсолютно непрерывные функции. Математическое описание управляемой системы с обратной связью. Теоремы существования решений для дифференциальных включений в конечномерном пространстве.

    контрольная работа, добавлен 03.02.2011

  • Методы решения уравнений в частных производных, а также анализ полученных результатов, используемые основные понятия и методы. Параметры разностных схем, их структура и назначение. Вариационный принцип Лагранжа и Гамильтона, их сравнительное описание.

    контрольная работа, добавлен 31.10.2014

  • Проблема численного решения линейных уравнений. Основные методы решения нелинейных уравнений. Графическая иллюстрация метода половинного деления. Создание функциональной модели нахождения корней уравнения методами Ньютона, хорд и половинного деления.

    дипломная работа, добавлен 31.10.2014

  • Основные понятия теории обыкновенных дифференциальных уравнений первого порядка. Достаточные условия существования и единственности решения задачи Коши. Метод последовательных приближений функции. Численные способы математического решения задачи Коши.

    дипломная работа, добавлен 06.03.2016

  • Понятие линейного уравнения, его типы и формы. Сущность и математическое обоснование определителей второго порядка. Порядок и правила решения систем двух линейных уравнений с двумя переменными с помощью определителей. Использование закона Крамера.

    конспект урока, добавлен 07.04.2014

  • Решение системы дифференциальных уравнений, описывающей процесс получения жидкого железа прямого восстановления в электродуговой сталеплавильной печи. Энергетические и химические процессы в расплаве и шлаке. Строение пространства моделирования системы.

    статья, добавлен 02.11.2018

  • Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.

    статья, добавлен 27.11.2018

  • Определение производных первого порядка. Порядок решения системы уравнений методом Крамера. Построение графика функции, используя исследования функции y = x3–2,5x2–2x+1,5. Поиск неопределенных интегралов. Определение координат векторов АВ, ВС, СА.

    контрольная работа, добавлен 23.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.