Леонардо Пизанский и числа Фибоначчи

Изучение биографических данных о первом математике средневековой Европы Леонардо Пизанском (Фибоначчи). Рассмотрение сущности и особенностей математической последовательности чисел Фибоначчи. Определение геометрического смысла "золотого сечения".

Подобные документы

  • Разработка рациональной системы рыночного анализа. Основные принципы и структура пятиволнового паттерна. Применение теории волн Эллиота на фондовом рынке. Два исключения плоской коррекции. Значение работ Фибоначчи для развития математики и астрофизики.

    реферат, добавлен 03.05.2014

  • Формула нахождения очень больших простых чисел. Алгоритмы разложение больших чисел на простые множители. Вычисление ряда чисел Фибоначчи. Числовой код треугольника Паскаля. Простые числа как основа защиты электронной коммерции и электронной почты.

    статья, добавлен 03.03.2018

  • Геометрическое построение "золотого сечения". Построение Евклидом правильных 5- и 10-угольников. Интерес к "золотому сечению" среди ученых и художников в связи с его применениями в геометрии, искусстве и архитектуре. Ряд Фибоначчи. Красота по формуле.

    реферат, добавлен 25.06.2013

  • Применение формул Эйлера, Гаусса и Куммера для гипергеометрической функции. Свойства "золотого сечения", его роль в математике и в теории чисел. Доказательство лемм с помощью схемы Чудновского-Хаты для нахождения числового значения "золотого сечения".

    статья, добавлен 27.05.2018

  • История происхождения египетских дробей в математике. Применение форм записи, основанных на иероглифе глаз Гора. Исследование разложений с помощью алгоритма Фибоначчи. Характеристика современной теории чисел. Особенность изучения гипотезы Эрдеша-Страуса.

    доклад, добавлен 30.11.2015

  • История развития золотого сечения, исследование законов золотого сечения или непрерывного деления. Применение золотого сечения в современной живописи, музыке, архитектуре, литературе и математике. Присутствие золотого сечения в окружающей жизни.

    творческая работа, добавлен 18.02.2020

  • Изучение анализа однородных электрических цепей методом лестничных чисел. Связь параметров четырехполюсников, составляющих основу лестничных электрических цепей, с основным уравнением их передачи с цепными матрицами, а также соотношением Кассини.

    статья, добавлен 22.01.2018

  • Золотое сечение - иррациональное число, открытое древними греками. Существование числовой последовательности, известной как ряд Фибоначчи. Примеры спирального развития сегментов раковины. Пропорции различных частей человеческого тела, его золотое сечение.

    реферат, добавлен 09.10.2018

  • Изучение сущности определенного интеграла – средства исследования в математике, физике, механике. Определение площади криволинейной трапеции. Ознакомление с функциями определенного интеграла. Рассмотрение геометрического смысла определенного интеграла.

    контрольная работа, добавлен 17.01.2015

  • Закон сохранения количества чисел джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Изоморфные свойства рядов четных и нечетных чисел натурального ряда. Определение простоты произвольного целого числа и факторизация.

    учебное пособие, добавлен 15.09.2012

  • Концепция иррациональных чисел в античной математике. Принятие таких понятий как ноль, отрицательные числа, целые и дробные числа в средние века. Появление комплексных чисел в Новое время. Доказательство иррациональности числа Пи Ламбертом, Лежандром.

    реферат, добавлен 08.02.2017

  • Моделирование вещественных параметров вычисления формулы золотого сечения, в случаях невозможности применения математической модели, удовлетворяющей описание прикладных задач. Исчисление поправочных коэффициентов в уравнении пропорции двух величин.

    статья, добавлен 28.10.2015

  • Определение сущности числа, история его происхождения. Основные функции количественных натуральных числовых единиц. Система записи чисел в Древнем Риме и Вавилоне. Рассмотрение особенностей счета у народа майя. Славянские цифровые знаки-буквы с титлами.

    презентация, добавлен 19.01.2015

  • Леонардо Эйлер как великий математик. Определение числа e, приближенное вычисление его значения, трансцендентность и экспоненциальная функция. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.

    курсовая работа, добавлен 15.05.2011

  • Составление "коллекции" простых чисел способом "решето Эратосфена". Формулирование и возможности разрешения проблемы Гольдбаха-Эйлера. Рассмотрение линейных, плоских и телесных фигурных чисел. История многоугольных и дружественных чисел в математике.

    реферат, добавлен 08.12.2017

  • Определение эмпирических соотношений, которыми описываются простые числа и закономерности начала числовой оси натуральных чисел. Рассмотрение наличия больших интервалов числовой оси, не содержащих простые числа. Изучение интервалов с нечетными числами.

    статья, добавлен 30.03.2017

  • Изучение значения и видов треугольников. Использование принципа "золотого треугольника" в бессмертных творениях Леонардо да Винчи. Трансформация грубой материи в организованную. Божественные, достоинства, символизирующие собой три царства природы.

    презентация, добавлен 05.10.2017

  • Программные способы получения последовательностей большого периода. Анализ преимуществ и недостатков мультипликативного генератора Фибоначчи. Использование компьютерной алгебры Sage для случайной генерации комбинаций квадратных матриц с конечными полями.

    статья, добавлен 14.08.2022

  • Определение понятия множества чисел и классификация их систем. Характеристика и доказательство аксиом Пеано по методу математической индукции. Исследование теорем о множестве целых чисел. Очерк сущности множества рациональных и комплексных чисел.

    реферат, добавлен 29.10.2013

  • Использование в математике теоремы Ферма и бесконечности регулярных простых чисел. Свойства сравнения по модулю третьего натурального числа. Доказывание многих высказанных в математике предложений. Доказательство теоремы и решение данного уравнения.

    статья, добавлен 03.03.2018

  • Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.

    лекция, добавлен 22.12.2013

  • Геометрическое представление комплексного числа. Модуль и аргумент в математике. Формула Муавра и правила извлечения корней. Алгебраическая, тригонометрическая и показательная формы комплексных чисел. Рассмотрение функций комплексного переменного.

    реферат, добавлен 15.10.2021

  • Сравнение по ненулевому модулю третьего натурального числа. Характеристика главных особенностей деления числа на множество указанных чисел (дробных или целых). Сложение и умножение чисел. Отношение эквивалентности. Основные классы сравнения чисел.

    статья, добавлен 03.03.2018

  • Определение количества единиц каждого класса и разряда многозначных чисел. Изучение алгоритма чтения многозначных чисел, способы переделать неправильные равенства в правильные, переставляя только одну палочку. Рассмотрение правила умножения числа.

    разработка урока, добавлен 08.04.2020

  • История появления проблем простых чисел. Асиптотический Закон рапределения простых чисел в натуральном ряду. Роль простых чисел в математике. "Тернарная" проблема Гольдбаха. Список проблем для Теории чисел, аналогичный списку Гильберта, его описание.

    статья, добавлен 24.08.2020

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.