История развития чисел и счета

Появление первых арифметических и геометрических понятий. Возникновение и основные этапы эволюции счета: выработка эталона-множества символизирующего некое конкретное число (где, впервые возникает понятие числа); выработка наиболее удобных счетных систем.

Подобные документы

  • Определение понятия множества чисел и классификация их систем. Характеристика и доказательство аксиом Пеано по методу математической индукции. Исследование теорем о множестве целых чисел. Очерк сущности множества рациональных и комплексных чисел.

    реферат, добавлен 29.10.2013

  • Определение основных понятий числовых множеств. Граничная точка и граница множества, соединения и бином Ньютона, а также треугольник Паскаля. Характеристика комплексных чисел и операции над ними. Формула Муавра и извлечение корня из комплексного числа.

    реферат, добавлен 17.01.2011

  • Очерк зарождения и эволюции математических действий с числами, давших опору системе комплексных чисел и арифметике, как науке. Изучение особенностей геометрических выражений чисел. Обзор основных свойств дробей и операции над рациональными числами.

    курсовая работа, добавлен 05.10.2013

  • Развитие математики в Западной Европе. Изучение теоретико-числовых свойств чисел Фибоначчи, возможности их применения к решению задач. Применение числа Фибоначчи в вопросах, связанных с исследованием путей в различных геометрических конфигурациях.

    реферат, добавлен 26.03.2019

  • Общее понятие и признаки комплексного числа. Тригонометрическая форма комплексного числа. Произведение двух комплексных чисел, формула его вычисления. Корни n-ой степени комплексного числа. Действительная и комплексная степень комплексного числа.

    реферат, добавлен 21.08.2017

  • Изучение истории формирования и развития математических учений в странах Азии и Востока. Появление арабской нумерации. Открытие арифметических действий, дробей и задач. Алгебра и квадратные уравнения, геометрические построения и теория чисел (отношений).

    реферат, добавлен 18.11.2014

  • Число как основное понятие математики. Натуральные числа, их функции. Вавилонские шестидесятеричные дроби. Нумерация и дроби в Древней Греции. Развитие идеи отрицательного количества в Европе. Векторные, действительные рациональные и иррациональные числа.

    реферат, добавлен 02.03.2017

  • Поняття про спряжені комплексні числа та протилежні числа. Розв’язування квадратних рівнянь з від’ємним дискримінантом. Закони множення для дійсних чисел: переставний і сполучний. Приклади додавання, віднімання, множення та ділення комплексних чисел.

    реферат, добавлен 07.10.2010

  • Роль числа в познании и конституировании мира. Число как основное понятие математики. Понятие натурального числа. Число как первая сущность, определяющая все многообразные внутрикосмические связи мира, основанного на мере, соразмерного и гармоничного.

    доклад, добавлен 11.01.2012

  • Составление "коллекции" простых чисел способом "решето Эратосфена". Формулирование и возможности разрешения проблемы Гольдбаха-Эйлера. Рассмотрение линейных, плоских и телесных фигурных чисел. История многоугольных и дружественных чисел в математике.

    реферат, добавлен 08.12.2017

  • Применение персональных компьютеров к решению проблем выявления закономерности распределения простых чисел и подтверждения гипотезы Эйлера–Гольдбаха. Доказывание существования бесконечного множества простых чисел. Вычисление таблицы простых чисел.

    статья, добавлен 26.04.2019

  • Любопытные свойства натуральных чисел, которые обнаруживаются при выполнении над ними арифметических действий. Сущность задачи о ростовщике представителя знаменитой швейцарской династии математиков Якоба Бернулли. Приметы и суеверия о числах 7 и 13.

    доклад, добавлен 10.09.2014

  • Выделение из предложенного множества подмножества и нахождение числа элементов в дополнении этого подмножества. Понятие разности целых неотрицательных чисел. Связь между действиями вычитания и сложения. Принцип нахождения неизвестного слагаемого.

    контрольная работа, добавлен 26.04.2015

  • В работе описан метод факторизации чисел Мерсенна, разработанный на основе утверждения о делителях числа Mp: все простые делители числа Mp имеют вид 2p*k+1. Определено значение индекса n. Выполнена формализация определения простого числа Софи Жермен.

    статья, добавлен 26.01.2020

  • Формулы сокращенного умножения и логарифмов. Наибольший общий делитель двух или нескольких натуральных чисел. Простые и составные числа. Модуль действительного числа, его свойства. Степень числа с рациональным показателем. Арифметический корень.

    учебное пособие, добавлен 04.02.2012

  • Число - способ подсчета предметов; цифры – значки, которыми записывают числа; система счисления или нумерация – запись чисел с помощью цифр: основание системы, история возникновения, особенности, сходства и различия систем счисления Древнего Мира.

    реферат, добавлен 12.12.2010

  • Применение функций комплексного переменного в физике. Использование мнимого числа и функции от комплексного переменного в науках. Решение линейных дифференциальных уравнений с постоянными коэффициентами. Геометрическое истолкование комплексных чисел.

    статья, добавлен 25.12.2017

  • Усвоение межпредметных понятий и их основа формирования целостной естественнонаучной картины мира. Функция как математическое понятие, отражающее связь элементов одного множества с элементами из другого множества. Географические и декартовы координаты.

    реферат, добавлен 01.07.2015

  • Особенности решений уравнений с комплексным переменным. Этапы развития теории функций комплексного переменного. Причины возникновения комплексных чисел. Основные способы решения алгебраических уравнений. Развитие техники операций над комплексными числами.

    реферат, добавлен 12.09.2012

  • Характеристика математики как науки о количественных отношениях и пространственных формах действительного мира, особенности ее назначения. Появление счетных функций: умножения, деления, сложения и вычитания чисел, первые геометрические понятия и цифры.

    презентация, добавлен 19.11.2014

  • Понятие и история формирования римских цифр, их отличительные особенности и правила использования. Схема древнего пальцевого счета на счетной доске абак, его закономерности и применение. Другие воплощения данного метода: японский соробан, русские счеты.

    презентация, добавлен 04.06.2016

  • Аксиоматическая теория натуральных чисел, рациональных, действительных, комплексных чисел и кватернионов. Характеристика рационального числа через его представление в виде десятичной дроби. Комплексные двойные и дуальные числа. Усиленная аксиома Кантора.

    учебное пособие, добавлен 16.06.2015

  • Зарождение и история развития систем счисления. Позиционные и непозиционные системы. Представление чисел с фиксированной и плавающей запятой. Перевод целых чисел из одной позиционной системы счисления в другую. Представление целых чисел в компьютерах.

    лабораторная работа, добавлен 04.09.2014

  • Обнаружение первых задач, связанных с извлечением квадратного корня. Применение теоремы Пифагора для нахождения стороны прямоугольного треугольника. Использование в математике мнимых чисел, понимаемых как квадратные корни из отрицательных чисел.

    доклад, добавлен 22.10.2020

  • Определение эмпирических соотношений, которыми описываются простые числа и закономерности начала числовой оси натуральных чисел. Рассмотрение наличия больших интервалов числовой оси, не содержащих простые числа. Изучение интервалов с нечетными числами.

    статья, добавлен 30.03.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.