Родовое содержание и видовые формы натурального числа

Натуральное число как первый математический объект и его определение в математическом образовании, возникновение однородности. Родовое содержание натурального числа как развивающаяся структура количественных отношений. Видовые формы натурального числа.

Подобные документы

  • Определение дуальных и двойных чисел, их формулы и расчеты. Дуальные числа как ориентированные прямые плоскости. Определение модуля, сопряжённого числа, делителя нуля и цикла множества ориентированных и бесконечно удалённых прямых плоскости Лобачевского.

    курсовая работа, добавлен 22.04.2011

  • Определение понятия "комплексные числа", их алгебраическая форма, вычисления суммы и произведения, основные этапы изучения. Тригонометрическая форма комплексного числа, его геометрическая модель. Основные действия: сложение, вычитание, умножение, деление.

    презентация, добавлен 26.02.2015

  • Сущность и введение мнимой единицы, понятие комплексного аргумента. Особенности алгебраической, тригонометрической и экспоненциальной формы записи комплексного числа. Вычитание, сложение, деление и умножение комплексных чисел, их извлечение из корней.

    презентация, добавлен 16.01.2018

  • Понятие комплексного числа, его геометрическая интерпретация. Математические операции над комплексными числами: вычитание и деление, возведение в степень, извлечение корня, тригонометрическая форма, свойства модуля и аргумента. Уравнения высших степеней.

    курсовая работа, добавлен 26.09.2009

  • Леонардо Эйлер как великий математик. Определение числа e, приближенное вычисление его значения, трансцендентность и экспоненциальная функция. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.

    курсовая работа, добавлен 15.05.2011

  • Раціональні числа як нескінченні десяткові періодичні дроби. Особливості основних теорем для розширення множини раціональних чисел. Ірраціональне число як нескінченний неперіодичний десятковий дріб. Модуль дійсного числа, характеристика його властивостей.

    курсовая работа, добавлен 15.06.2016

  • Піднесення комплексного числа до цілого додатного степеня за допомогою формули бінома Ньютона. Закономірності та головні етапи добування кореня з комплексного числа. Умови рівності двох комплексних чисел, а також вимоги до їхніх модулів і аргументів.

    контрольная работа, добавлен 16.07.2017

  • Сравнение числа Пи с другими математическими величинами и их визуализация. Изучение методов использования компьютерных систем для интерпретации математических величин. Анализ возможности использования среды КСС "Demomod" при визуализации моделей числа.

    статья, добавлен 22.01.2017

  • Изучение определения числа у Г. Фреге. Сравнительный анализ подхода Г. Фреге со взглядами И. Канта, оригинальность и приоритет фрегевского подхода. Недостатки определения числа у Г. Фреге, выявленные Б. Расселом. Критическая оценка исследований Рассела.

    статья, добавлен 24.11.2018

  • Число как основное понятие математики. Натуральные числа и их функции. История происхождения дробей в Древней Греции, Египте, Риме, Руси. Развитие идеи отрицательного количества в Европе. Определение действительных рациональных и иррациональных чисел.

    реферат, добавлен 15.12.2016

  • Определение эмпирических соотношений, которыми описываются простые числа и закономерности начала числовой оси натуральных чисел. Рассмотрение наличия больших интервалов числовой оси, не содержащих простые числа. Изучение интервалов с нечетными числами.

    статья, добавлен 30.03.2017

  • Поняття про спряжені комплексні числа та протилежні числа. Розв’язування квадратних рівнянь з від’ємним дискримінантом. Закони множення для дійсних чисел: переставний і сполучний. Приклади додавання, віднімання, множення та ділення комплексних чисел.

    реферат, добавлен 07.10.2010

  • Комплексные числа были введены в математику для того, чтобы сделать возможной операцию извлечения квадратного корня из любого действительного числа. Свойства комплексных чисел. Описание действий с ними. Основная теорема алгебры. Модуль комплексного числа.

    реферат, добавлен 13.12.2022

  • История возникновения фигурных чисел, их основные виды и свойства. Анализ возможностей применения фигурных чисел в повседневной жизни (в живописи, архитектуре, дизайне и других сферах). Центрированные полигональные числа и многомерные фигурные числа.

    реферат, добавлен 17.06.2018

  • Числа Фибоначчи - математическая последовательность, отражающаяся во всех творениях мироздания, которые подчинены единым законам природы и имеют большой практический и теоретический интерес. Анализ специфических особенностей правила золотого сечения.

    творческая работа, добавлен 26.04.2019

  • История введения в школьный курс математики темы "Иррациональные числа", краткая характеристика материала учебников данного периода. Исследование начальной информации про иррациональные числа и действия с ними. Извлечение числа из кубического корня.

    статья, добавлен 11.10.2024

  • Краткий исторический очерк, возникновение и развитие чисел. Поле алгебраических чисел, их суть и значение. Понятие числового поля, алгебраическое число. Рациональные приближения алгебраических чисел. Теорема Лиувиля, трансцендентные числа Лиувиля.

    реферат, добавлен 08.06.2010

  • В работе описан метод факторизации чисел Мерсенна, разработанный на основе утверждения о делителях числа Mp: все простые делители числа Mp имеют вид 2p*k+1. Определено значение индекса n. Выполнена формализация определения простого числа Софи Жермен.

    статья, добавлен 26.01.2020

  • Формулы сокращенного умножения и логарифмов. Наибольший общий делитель двух или нескольких натуральных чисел. Простые и составные числа. Модуль действительного числа, его свойства. Степень числа с рациональным показателем. Арифметический корень.

    учебное пособие, добавлен 04.02.2012

  • Отыскание простых множителей натурального числа. Известный алгоритм Евклида для отыскания наибольшего общего делителя двух чисел как прием факторизации. Факторизация по разности квадратов. Упрощение вычислений с помощью знаний признаков делимости.

    статья, добавлен 15.09.2012

  • Появление отвлеченного понятия натурального числа вместе с развитием письменности. Система счисления - способ записи (изображения) чисел. Единичная ("палочная") система. Древнеегипетская десятичная непозиционная и вавилонская шестидесятеричная системы.

    реферат, добавлен 08.02.2012

  • Свойства делимости целых чисел. Сущность канонического разложения. Факториал, сумма делений натурального числа. Характеристика алгоритма Евклида. Основные факторы делимости и восстановление цифр. Понятие малой теоремы Ферма. Целые рациональные выражения.

    учебное пособие, добавлен 12.09.2013

  • Узагальнення та систематизація надбаних учнями знань, вмінь оперувати поняттями додатне, від'ємне число, цілі та раціональні числа, сприяння вихованню у них почуття самоконтролю. Різнорівневі завдання для самостійної роботи на аркушиках через копірку.

    разработка урока, добавлен 20.09.2019

  • Історія появи числа в геометрії, його ірраціональність та вираження дробом. Трансцендентність числа пі - математичної константи, що визначається у Евклідовій геометрії як відношення довжини кола до його діаметра або як площа круга одиничного радіуса.

    реферат, добавлен 20.12.2016

  • История становления понятия вещественного числа. Конструктивные способы определения вещественного числа. Системы аксиом вещественных чисел. Связь вещественных чисел с рациональными. Обобщение и теоретико-множественные свойства вещественных чисел.

    реферат, добавлен 25.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.