Спектры предфрактальных графов с затравками – циклами, сохраняющих смежность старых ребер

Задача нахождения характеристических многочленов и спектров предфрактальных графов с затравками циклами, смежность старых ребер которых в траектории не нарушается. Рекуррентная формула, собственные значения (спектра) предфрактального графа с вершинами.

Подобные документы

  • Математическое описание графа множествами вершин, списками смежности и матрицей инцидентности. Суть сетки весов соответствующих неориентированным конечностям. Анализ путей отбрасывания истоков и стоков. Поиск остевого дерева алгоритмом Прима-Краскала.

    курсовая работа, добавлен 04.02.2015

  • Способы оценки погрешности численного решения нелинейных уравнений. Рекуррентная формула, которая используется для получения решения уравнения методом Ньютона. Алгоритм нахождения точки экстремума с использованием методики одномерной оптимизации.

    курсовая работа, добавлен 16.06.2021

  • Проектирование информационных систем на основе графовых моделей. Анализ связей между элементами и множествами модели ИС в аспекте применения инвариантов теории графов. Использование соответствия Галуа при анализе системных связей информационных моделей.

    статья, добавлен 24.07.2018

  • Сущность многочленов: понятие, степень, равенство, операции, схема Горнера. Характеристика многочленов нулевой степени. Значение корней многочленов в алгебре. Особенности схемы Горнера, примеры симметричных многочленов и проверка корня на кратность.

    курсовая работа, добавлен 19.01.2012

  • Ориентированные и неориентированные графы, петля, кратные дуги и рёбра. Степень вершины, полустепень исхода и захода графа. Существование цикла и контура. Способы представления графов: матрица смежности, инцидентности, модифицированный список смежности.

    презентация, добавлен 26.07.2015

  • Теория графов как способ решения задач. Задачи о кёнигсбергских мостах Эйлера. Способы представления графа. Эйлерова линия, проходящая по всем ребрам в точности по одному разу. Зарождение еще одной области в математики в ходе решения головоломок.

    контрольная работа, добавлен 07.11.2013

  • Построение модели транспортной сети в виде графа, с множеством вершин, соответствующих узлам сети, и множеством ребер – участкам дорог. Оптимальный алгоритм выделения наибольших максимальных цепей по заданному критерию и оценка по остальным критериям.

    статья, добавлен 26.05.2017

  • Исследование алгоритмов поиска в ориентированных графах, их применение в программах для транспортных и коммуникационных сетей. Способы представления ориентированных графов в виде различных матриц, графически и другими способами с практическими примерами.

    курсовая работа, добавлен 23.04.2011

  • Понятие и типы многочленов, принципы и закономерности их формирования. Свойства делимости многочленов. Метод неопределённых коэффициентов. Теорема Безу и ее следствия. Разложения многочлена на множители. Степень многочленов. Наименьшее общее кратное.

    курсовая работа, добавлен 24.06.2011

  • Определение матрицы и арифметические операции над матрицами. Матричное представление линейных уравнений. Используемые инструменты MathCAD для вычислений с матрицами. Формирование уравнений цепи на основе теории графов. Топологические матрицы графа.

    курсовая работа, добавлен 28.04.2015

  • Понятие и типы многочленов. Кольцо симметрических многочленов. Наиболее общий способ получения симметрических многочленов, формулирование теоремы. Доказательство существования многочлена с использованием принципа математической индукции, результант.

    курсовая работа, добавлен 18.03.2013

  • Основная теория алгебры. Корни многочлена и его производной. Свойства неприводимых многочленов. Алгоритмы разложения на неприводимые множители. Формула обращения Мёбиуса. Теоремы дополнения, сложения аргументов и умножения. Арифметические свойства чисел.

    книга, добавлен 28.12.2013

  • Условия разложения функций в ряды Фурье по классическим ортогональным многочленам. Формулировка и доказательство аналогов леммы М.В. Федорюка. Вывод асимптотических формул для многочленов Чебышева-Эрмита, Якоби, Лежандра-Лагерра и их производных.

    автореферат, добавлен 10.12.2013

  • Изучение и создание алгоритма решения задачи о выделении минимального остовного дерева. Понятие теории графов. Характеристика алгоритма Прима, Краскала, Борувки. Определение каркаса, алгоритм выделения минимального остовного дерева нагруженного графа.

    курсовая работа, добавлен 03.11.2015

  • Определение кратчайшего пути между вершинами сети как классический пример сетевых задач. Характеристика ориентированного и неориентированного графа. Методы генерации исходного допустимого потока. Метод Минти для решения задачи о кратчайшем пути в сети.

    контрольная работа, добавлен 24.01.2011

  • Изучение принципов установления изоморфизма или изоморфного вложения между заданными структурами при решении комбинаторно-логических задач и оптимизационных на графах. Пример решения задач распознавания изоморфизма. Определение вершины в алгоритме.

    лекция, добавлен 23.01.2017

  • Элементы теории графов. Общая схема метода динамического программирования. Построение сетевого графика технологического комплекса. Критические пути и нахождение времени завершения комплекса работ. Задача о построении минимального остовного дерева.

    учебное пособие, добавлен 01.04.2014

  • История решения математической задачи о Кенигсберских мостах. Проблема посещения семи мостовых сооружений. Создание Леонардом Эйлером теория графов. Изучение систем, составление оптимальных маршрутов доставки грузов или маршрутизации данных в Интернете.

    реферат, добавлен 20.09.2019

  • Построение модели составного кластера на один период и составного динамического суперкластера. Изучение методов анализа и визуализации текстов. Построение модели динамического графа референций. Динамический граф референций для корпуса RuNeWC и ASOAIF.

    дипломная работа, добавлен 28.08.2016

  • Биографические сведения о Леонарде Эйлере - идеальном математике XVIII в. Понятие прямой Эйлера как прямой с ортоцентром, центроидом и центром описанной окружности треугольника. Доказательства теоремы о многогранниках. Теория графов и задача Эйлера.

    презентация, добавлен 28.01.2013

  • Метод Ньютона - универсальный способ нахождения границ многочлена. Раскрытие схемы Горнера. Доказательство теоремы Штурма. Сущность алгоритмов итераций, половинного деления, хорд и касательных. Решение задач на вычисление уравнений высших степеней.

    курсовая работа, добавлен 06.01.2014

  • Задача вычисления интегралов. Дополнительный член в формуле прямоугольников. Вычисление определенных интегралов по формуле прямоугольников. Использование формулы Ньютона-Лейбница. Определение площади криволинейной фигуры. Формула среднего значения.

    контрольная работа, добавлен 18.12.2012

  • Рассмотрение логических или нечисловых задач, которые составляют обширный класс нестандартных задач. Анализ разных способов решения логических задач. Особенности методов рассуждений, таблиц, графов, блок-схем, бильярда, метода с помощью кругов Эйлера.

    статья, добавлен 25.02.2019

  • Для различных приложений функций нескольких переменных построен алгебраический подход к построению многочленов, формулы которых содержат символьные переменные. Примеры демонстрируют эффективность и широкий охват решаемых научно-технических задач.

    статья, добавлен 08.05.2021

  • Исследование аналитических задач, возникающих перед субъектами расследования преступлений, связанных с установлением взаимосвязей между фигурантами преступления и обстоятельствами его совершения, такими как дата, время, место на основе теории графов.

    статья, добавлен 08.03.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.