Типовые задачи анализа
Расчет корней алгебраического уравнения и системы алгебраических уравнений. Исследование функции одной или нескольких (двух) переменных, разложение функции в ряд Тейлора и ряд Фурье, вычисление производных и интегралов. Расчет вещественных корней.
Подобные документы
Вычисление неопределенных и определенных интегралов, проверка результатов дифференцированием. Определение площади фигуры, ограниченной параболой и прямой. Дифференциальное исчисление функций нескольких переменных. Примеры решений системы уравнения.
контрольная работа, добавлен 16.04.2012Вычисление площади фигуры с помощью двойного интеграла в полярных координатах. Расчет объема тела с помощью тройного интеграла. Исследование сходимости числового ряда. Разложение функции f(x) в ряд Фурье. Общее и частное решение дифференциального уравнени
контрольная работа, добавлен 22.01.2012Изложение теории математического анализа. Обзор тем курса: предел функции; основы дифференциального исчисления; исследование функции и построение графика; функции двух переменных; неопределённый и определённый интегралы; дифференциальные уравнения; ряды.
методичка, добавлен 22.10.2014- 79. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.
дипломная работа, добавлен 21.01.2011 Понятие и задача интегрирования. Свойства неопределённых интегралов как следствие соответствующих свойств для производных. Правило замены переменных в интеграле, вычисление неопределенных интегралов. Метод вычисления интегралов от рациональных функций.
лекция, добавлен 10.04.2016- 81. Численные методы
Описание численных методов решения алгебраических и дифференциальных уравнений. Использование языка программирования Visual Basic для реализации алгоритмов. Определение корней уравнения методом хорд и касательных. Аппроксимация и интерполяция функций.
учебное пособие, добавлен 22.05.2014 Виды матриц и операции над ними. Системы линейных алгебраических уравнений. Линейные операции над векторами. Аналитическая геометрия, уравнения плоскости. Кривые второго порядка: эллипс гипербола, парабола. Свойства предела функции, таблица производных.
курс лекций, добавлен 05.01.2016Определение уравнение переходного процесса по изображению регулируемого параметра по Лапласу. Нахождение корней методом приближения. Разложение изображения регулируемого параметра на сумму простых дробей. Задание на определение исследуемого уравнения.
методичка, добавлен 30.10.2010Графический метод решения уравнений (уравнение окружности, эллипса, гиперболы, кардиоида). Нахождение модуля, методы определения пределов и производных. Условия применений правила Лопиталя, вычисление экстремумов, монотонности. Расчет дифференциалов.
контрольная работа, добавлен 11.04.2009- 85. Математика
Определение производных первого порядка. Порядок решения системы уравнений методом Крамера. Построение графика функции, используя исследования функции y = x3–2,5x2–2x+1,5. Поиск неопределенных интегралов. Определение координат векторов АВ, ВС, СА.
контрольная работа, добавлен 23.04.2013 Алгоритм выполнения задачи решения уравнения с одной переменной с нахождением всех его корней или установление доказательства, что корни отсутствуют. Понятие корня линейного равенства. Правила раскрытия скобок. Задания для самостоятельного решения.
презентация, добавлен 14.10.2013Правила решения систему линейных алгебраических уравнений методом Гаусса и Крамера. Порядок разложения вектора. Формирование уравнения медианы. Вычисление косинуса внутреннего угла треугольника. Расчет угла между ребрами пирамиды и площади грани.
контрольная работа, добавлен 25.08.2015Изучение линейных однородных уравнений с постоянными коэффициентами (случай простых и кратных корней), их фазовая плоскость. Расчет показателей нормальной линейной однородной и линейной неоднородной системы с постоянными коэффициентами в математике.
курсовая работа, добавлен 04.01.2016Определение, расчет и совместность системы линейных уравнений. Варианты решений фундаментальной системы уравнений и вычисление рангов матрицы. Модифицированная матрица и вычетание уравнений из строк. Определение произвольный системы, отличный от нуля.
контрольная работа, добавлен 21.11.2012Понятие о функции двух переменных. Понятие и содержание линии уровня функции, порядок ее нахождения. Предел и его свойства. Непрерывность и дифференцируемость функции двух переменных. Частные производные. Методика определения дифференциала и градиента.
контрольная работа, добавлен 20.09.2011Решение системы уравнений методом Гаусса. Уравнение медианы, высоты, сторон треугольника. Вычисление внутренних углов треугольника. Исследование функции на непрерывность, поиск точки разрыва и характера разрыва. Поиск производной функции, предел функций.
контрольная работа, добавлен 18.02.2016Решение системы линейных алгебраических уравнений по правилу Крамера и ее проверка. Графическое решение системы линейных алгебраических неравенств. Поиск производной и дифференциала функций, интервалов выпуклости и точек перегиба графика функции.
контрольная работа, добавлен 24.02.2015Дифференциальные уравнения в частных производных. Задача Пуанкаре, правила ее решения. Приведение к каноническому виду дифференциального уравнения второго порядка от двух независимых переменных. Краевые задачи для математического равенства Лапласа.
шпаргалка, добавлен 04.04.2015Осуществление приближенных вычислений с помощью полного дифференциала функции одной и двух переменных. Вычисление приближенно, заменяя приращения функции ее дифференциалом. Приведение формул нахождения абсолютной и относительной погрешности вычислений.
контрольная работа, добавлен 09.04.2015Вычисление пределов функций. Правила вычисления производных. Нахождение наибольших и наименьших значений функции на отрезке. Запись уравнения касательной и нормали в общем виде. Область определения функции. Пересечение с осями координат, нули функции.
контрольная работа, добавлен 29.04.2019Обыкновенные дифференциальные уравнения, их характеристика и свойства. Типы уравнений с разделяющимися переменными, их структура и требования к решению. Достаточные признаки разложимости в ряд Фурье, порядок определения интегралов. Теорема Ляпунова.
курс лекций, добавлен 05.03.2016Решение нелинейных уравнений численными методами: методом половинного деления, методом Ньютона. Определение промежутков, содержащих корни. График функции cos(x)ch(x)+1=0. Создание функции нахождения точных значений корней с помощью программы MatLab.
лабораторная работа, добавлен 10.10.2015Исчисление функций одной и нескольких переменных, его виды (дифференциальное, интегральное): правило Лопиталя, схема исследования функции и построения ее графика, скалярное поле, неопределенный интеграл. Кратные интегралы. Элементы теории векторных полей.
контрольная работа, добавлен 17.06.2014Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.
курс лекций, добавлен 24.04.2009Решение неопределенных интегралов, проверка дифференцированием. Полный дифференциал функции. Исследование функции на экстремум. Частное решение интегрирования дифференциального уравнения с разделяющимися переменными. Исследование сходимости рядов.
контрольная работа, добавлен 16.11.2014