Основы геометрии

Три признака равенства треугольников. "Замечательные" линии и точки: высоты, медианы, бисектриссы треугольника, прямые Эйлера и Симсона. Практическая значимость точки Торричелли, окружности девяти точек, точки Брокара в строительстве и архитектуре.

Подобные документы

  • Особенности и специфика дифференциального уравнения. Теорема о нормальной форме уравнения, не разрешенного относительно производной в окрестности регулярной особой точки. Построение криминанты уравнения, точки касания криминанты с контактной плоскостью.

    курсовая работа, добавлен 08.01.2018

  • Определение ранга расширенной матрицы системы. Решение системы по формулам Крамера. Средства векторной алгебры. Разложение вектора в базисе по векторам. Уравнение прямой, проходящей через две точки. Определение знаков неравенств. Точки разрыва функции.

    контрольная работа, добавлен 03.02.2017

  • Понятие инверсии как сложного преобразования геометрических фигур, ее координатные формулы. Построение образа точки, прямой и окружности при инверсии. Свойства углов и расстояний при инверсии. Применение инверсии при решении задач на построение.

    курсовая работа, добавлен 05.10.2017

  • Значение геометрии в практической деятельности человека, история ее развития. Созидательная сила прямого угла. Геометрия в величайших архитектурных сооружениях: Тадж-Махал, египетская пирамида, русские церкви. Применение окружности в строительстве.

    контрольная работа, добавлен 14.05.2011

  • Визначення сфери та топологічне твердження, що її можна вивернути навиворіт, тобто всі внутрішні точки сфери показати на поверхні, а зовнішні точки приховати всередину, не проколюючи її, і не роблячи надломів. Історія вивертання сфери та парадокс Смейла.

    курсовая работа, добавлен 07.06.2015

  • Исследование классификационных методов отображения плоскости на себя. Определение равенства геометрических фигур. Свойства параллельного переноса точки в плоскости. Принципы осевой и центральной симметрий в отношении прямой. Коэффициенты гомотетии.

    краткое изложение, добавлен 17.03.2014

  • Аксиомы полуплоскости и луча: их возможности в построении геометрии. Основная характеристика изучения проблемы Жордана. Особенность смежных и вертикальных углов. Изучение метода равных треугольников, как исторически первого геометрического способа.

    курсовая работа, добавлен 25.10.2015

  • По плану исследовать функцию и построить её график: область определения, точки разрыва, корни уравнения, точки перегиба. Решить систему методом Гаусса: расширенная матрица. Вычислите площадь фигуры, ограниченной графиками функций. Вычислите интеграл.

    задача, добавлен 03.05.2009

  • Простейшая задача вариационного исчисления. Основные методы выведения уравнения Эйлера-Бернулли. Необходимые условия второго порядка для статистических задач в вариационном исчислении Лежандра. Условия Вейерштрасса для точки излома допустимой траектории.

    презентация, добавлен 21.08.2015

  • Формулировка и сущность теоремы Паскаля. Теорема о циклических шестиугольниках и её доказательство, точки четвёртого порядка. Понятие оператора цикла. Обоснование использования аппарата алгебраических подстановок. Аналитическое исследование множества.

    научная работа, добавлен 04.05.2012

  • Отображение плоскости на себя как преобразование, где точкам исходной плоскости сопоставляются точки этой же плоскости. Типы движений на плоскости: параллельный перенос, осевая симметрия, поворот вокруг точки, центральная симметрия. Свойства гомотетии.

    контрольная работа, добавлен 20.03.2011

  • Понятие неособой точки и способы задания поверхности (параметрический, явный или неявный). Система координатных параметрических уравнений и теорема об обратной функции. Геометрическое определение градиента, формулы Ньютона - Лейбница и Стокса.

    контрольная работа, добавлен 25.03.2011

  • Особенности решения задач по начертательной геометрии. Взаимное положение точек, линий и плоскостей, способы их преобразований и построение проекций. Определение истинных величин и октант. Построение сечения многогранника плоскостью и его развертка.

    учебное пособие, добавлен 23.11.2011

  • Понятие и общая характеристика различных типов точечных множеств: ограниченных сверху и снизу, неограниченных. Определение верхней и нижней грани. Расположение точечного множества вблизи какой-либо точки на прямой. Открытые и замкнутые множества.

    курсовая работа, добавлен 19.11.2014

  • Изучение методов изображения пространственных форм на плоскости. Проецирование прямой линии. Определение натуральной величины прямой. Главные линии плоскости. Кривые линии и поверхности. Аксонометрические проекции. Решение метрических и позиционных задач.

    учебное пособие, добавлен 27.05.2014

  • Число пи как отношение длины окружности, как траектории движения материальной точки вокруг силового центра, к ее диаметру, история его определения. Сущность и главные принципы физического метода определения данного численного значения, его обоснование.

    статья, добавлен 20.10.2013

  • Визначення лінії другого порядку, її види: коло, еліпс, парабола, гіпербола. Ексцентриситет еліпса, як відношення фокальних радіусів довільної точки еліпса до відстаней цієї точки до відповідних директрис. Рівняння параболи, ексцентриситет гіперболи.

    презентация, добавлен 26.01.2016

  • Рассмотрение конструирование и функционирование дидактической системы решения конкретных учебных задач. Использование геометрического преобразование объекта посредством перемещения, отображения относительно прямой или точки, зеркального отображение.

    статья, добавлен 08.12.2018

  • Огляд побудови класифікації афінних керованих систем для достатньо широкого класу обмежень на керування. Нелінійні афінні керовані системи звичайних диференціальних рівнянь в околі точки спокою з обмеженнями на керування, задачі попадання в точку спокою.

    автореферат, добавлен 29.07.2014

  • Рассмотрение свойств особой (неподвижной) точки типа ротор в двумерных неавтономных диссипативных вещественных системах обыкновенных дифференциальных уравнений. Исследование механизма перехода к хаосу в многомерных системах дифференциальных уравнений.

    статья, добавлен 15.05.2021

  • Понятие, виды и операции над векторами. Определение положения точки в декартовой системы координат. Отличия векторных от скалярных величин. Свойства смешанного произведения. Решения системы уравнений методом Крамера. Расчёт объема и высоты пирамиды.

    лекция, добавлен 21.09.2017

  • Формулы преобразований при повороте координатных осей. Простейшие уравнения точки, окружности и эллипса. Понятие эксцентриситета эллипса. Формулы фокальных радиусов. Мнимый эллипс, пара мнимых пересекающихся прямых. Каноническое уравнение гиперболы.

    лекция, добавлен 29.09.2013

  • Нахождение длинны стороны, внутреннего угла, точки пересечения высот. Уравнение медианы, проведенной через вершину. Система линейных неравенств. Понятие функции и её график. Координаты вектора в базисе. Производная функции и неопределённый интеграл.

    контрольная работа, добавлен 16.12.2012

  • Визначення поняття перпендикуляра до площини, похилої, проекції похилої на площину та відстані від точки до площини. Встановлення взаємозв’язку між довжинами похилих, проведених з однієї точки до площини, а також довжинами їхніх проекцій на площину.

    лекция, добавлен 02.06.2019

  • Понятие симметрии и исследование примеров ее проявления в природе, классификация и типы: осевая, двусторонняя, центральная, относительно прямой и точки. Использование симметричных фигур в архитектуре, искусстве. Математическое значение данного явления.

    презентация, добавлен 26.01.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.