Поиск кратчайшего пути. Алгоритм Флойда-Уоршелла
Определения теории графов. Реализация алгоритмов обработки графов в виде машинных процедур. Определение путей в графах. Математическое моделирование графов. Реализация алгоритма Флойда-Уоршелла без вычислительной системы. Оценка сложности алгоритма.
Подобные документы
Исследование сложности решения задачи агрегирования данных в многомерных кубах. Характеристика определения вычислительной сложности, анализ ее зависимости от параметров гиперкуба и оценка вычислительной сложности при варьировании этих параметров.
статья, добавлен 18.01.2018- 102. Раскраска графов
Графы как наборы точек (вершин), некоторые из которых объявляются смежными (соседними), их классификация и разновидности. Понятие и закономерности раскраски вершин графа. Алгоритм неявного перебора, его этапы. Принципы и правила распределения ресурсов.
доклад, добавлен 29.12.2014 - 103. Алгоритм Сугено
Этапы алгоритма Мамдани. Использование аппарата нечеткой логики для задач аппроксимации. Логический контроллер Сугено как универсальный аппроксиматор в условиях сравнения различных алгоритмов. Теоретическое обоснование алгоритма Сугэно в этом качестве.
реферат, добавлен 17.07.2013 Исследование свойств предфрактальных графов, порожденных затравкой, представляющей собой дерево. Использование степени фрактализации для определения исследуемого объекта. Оценка структуры относительно ее принадлежности к предфрактальным графам.
статья, добавлен 19.01.2018Математическое моделирование формоизменения материала в ходе испытания на сжатие с плоской деформацией. Разработка алгоритмов построения матрицы жесткости для вычислений с помощью метода конечных элементов, их реализация в форме программных компонент.
дипломная работа, добавлен 02.09.2018Простейшие задачи аналитической геометрии на плоскости и системы координат в геодезии и картографии. Применение матриц, элементов теории графов и систем линейных уравнений в географии. Исследования с помощью производных, дифференциалов и интегралов.
учебное пособие, добавлен 15.04.2014Глобальные структуры алгебраических байесовских сетей. Описание схемы алгоритма равновероятного синтеза минимального графа смежности. Понятие и сущность алгебраических байесовских сетей. Выявление основных возможностей реализации минимальных графов.
статья, добавлен 15.01.2019Элементы теории графов. Общая схема метода динамического программирования. Построение сетевого графика технологического комплекса. Критические пути и нахождение времени завершения комплекса работ. Задача о построении минимального остовного дерева.
учебное пособие, добавлен 01.04.2014Математическое моделирование, форма и принципы представления моделей и особенности их представления. Компьютерное моделирование при обработке опытных данных, типы интерполяции. Этапы алгоритма сглаживания опытных данных методом наименьших квадратов.
курс лекций, добавлен 19.06.2015- 110. Цифровые автоматы
Понятие цифрового автомата, история разработки, современные тенденции. Составление таблицы соответствия. Основные понятия теории графов. Минимизация абстрактного автомата Мили. Исключение недостижимых состояний. Определение классов совместимости.
контрольная работа, добавлен 11.04.2012 - 111. Разработка алгоритмов различной структуры и их реализация с помощью компьютерных программных средств
Понятия алгоритма и его свойства, способы и виды описания. Линейный, условный, цикл. Программная среда Basic-256: история, используемые программные компоненты. Задача на нахождение минимального элемента массива и количество элементов, равных минимальному.
курсовая работа, добавлен 18.05.2020 - 112. Задача коммивояжера
Определение последовательности объезда городов, которая обеспечит минимальное время переезда. Решение задачи о коммивояжере методом ветвей и границ. Неориентированный и ориентированный граф задачи коммивояжера. Теория графов и сетевого моделирования.
контрольная работа, добавлен 29.04.2011 Распределенные вычисления, рассматриваемые на примере модели синхронной отправки сообщений в сети, множество процессоров связанных модулями связи. Поиск центра неориентированного дерева, псевдокод алгоритма. Анализ трудоемкости разработанного алгоритма.
контрольная работа, добавлен 29.06.2012Области применения равносильных преобразований алгоритмов. Схемы представления алгоритмов и алгебра событий. Соответствие событий переходам в инверсном графе. Способы регулярного выражения алгоритма. Определение последующих степеней символьных матриц.
статья, добавлен 08.12.2018- 115. Хроматические числа
Постановка и решение задачи в одномерном случае. Определение хроматического числа прямой и плоскости. Критическая конфигурация точек на плоскости. Построение раскрасок плоскости. Доказательство теорем Райского и Лармана-Роджерса. Изучение теории графов.
книга, добавлен 25.11.2013 - 116. Теория графов
Построение графа отношения "x+y<=7" на множестве М={1,2,3,4,5,6}. Матрица сложности (вершин), инциденций (ребер) и расстояний. Вектор удаленности, центр и периферийные вершины. Радиус и диаметр графа. Числа внутренней и внешней устойчивости графа.
задача, добавлен 11.09.2012 Роль метода Якоби при решении научных и промышленных проблем: реализация алгоритмов вычислительной математики и физики, обрабатывание результатов экспериментальных исследований. Использование в данном процессе программы на языке программирования C++.
статья, добавлен 20.07.2018Великая теорема Ферма как самый большой контраст между простотой формулировки и сложностью доказательства. Утверждение Ферма–Майзелиса. Некоторые сведения из теории графов и определения. Универсальное доказательство неразрешимости уравнения теоремы.
реферат, добавлен 30.03.2017- 119. О развертках куба
Исследование возможных разверток куба, порядок представления каждой из них в виде графов. Способы разреза куба для получения одиннадцати известных разверток. Отличительные особенности и свойства симметричных и ассиметричных разверток, их внешний вид.
статья, добавлен 04.05.2012 - 120. Задача коммивояжера
Суть задачи сводится к поиску оптимального (кратчайшего, быстрейшего или самого дешевого) пути, проходящего через промежуточный пункты по одному разу и возвращающегося в исходную точку. Дана матрица расстояний. Решение задачи с помощью алгоритма Литтла.
статья, добавлен 03.03.2024 - 121. Операции с матрицами
Определение матрицы и арифметические операции над матрицами. Матричное представление линейных уравнений. Используемые инструменты MathCAD для вычислений с матрицами. Формирование уравнений цепи на основе теории графов. Топологические матрицы графа.
курсовая работа, добавлен 28.04.2015 - 122. Теория графов
Исследование математической теории о совокупности непустого множества вершин и ребер. Анализ кратности неориентированных и ориентированных дуг. Характеристика понятия эквивалентности при множестве вершин. Обоснование гомеоморфного подразбиения дуги.
лекция, добавлен 18.10.2013 Особенности разработки программы на С++ в консольном приложении, реализующей алгоритм нахождения первообразного корня. Алгоритм первообразного корня как программа, предназначенная для вычисления первообразного корня по данным, которые вводит пользователь.
курсовая работа, добавлен 29.12.2012Основные определения теории графов. Матрицы смежности и инцидентности. Вершинная связность и реберная вязность. Теорема Менгера и выделение k непересекающихся остовных деревьев 2k–реберно связном графе. Построение k непересекающихся остовных деревьев.
дипломная работа, добавлен 26.02.2020Граф как система объектов произвольной природы (вершин) и связок (ребер), соединяющих пары этих объектов. Определение связности графа. Нахождение наибольшего числа непересекающихся цепей. Нахождение наибольшего числа непересекающихся по ребрам путей.
реферат, добавлен 18.12.2022