Случайные события

Соотношения между случайными событиями. Аксиоматическое и классическое определение вероятности, основные элементы комбинаторики. Теоремы умножения и сложения, вероятность суммы совместных событий. Основы формулы Бейеса, схема испытаний Бернулли.

Подобные документы

  • Анализ возможных значений случайной величины и вычисление вероятности их появления. Использование формулы Бернулли в определении вероятности наступления событий, построение графика функции распределения. Расчет математического ожидания и дисперсии.

    контрольная работа, добавлен 20.10.2023

  • Нахождение вероятности выбора белых шаров из определенного количества черных. Вычисление вероятности выхода из строя элементов, заданных по условию, вероятность противоположного события. Построение графика вероятностей, использование формулы Бернулли.

    контрольная работа, добавлен 24.09.2016

  • Определение суммы вероятностей всех элементарных событий. Формула нахождения вероятности наступления определенного количества успехов в серии из множества испытаний Бернулли. Несовместные - исходы, которые не наступают при проведении одного опыта.

    презентация, добавлен 09.11.2015

  • Анализ классического определения вероятности. Описание теорем сложения и умножения вероятностей. Формула полной вероятности и формула Байеса. Изучение дискретных случайных величин. Нормальный закон распределения. Варианты задач по теории вероятности.

    методичка, добавлен 27.05.2016

  • Расчет задач по теории вероятности с разными условиями наступления тех или иных событий по формуле Бернулли. Исчисление вероятности наступления конкретного события. Исчисление вероятности конкретной последовательности наступления определенных событий.

    контрольная работа, добавлен 23.01.2014

  • Изложение методов решения задач на нахождение условной вероятности: вероятность суммы двух несовместимых событий; вероятность совместного появления двух зависимых событий, равная произведению вероятности одного из них на условную вероятность второго.

    задача, добавлен 07.06.2014

  • Определение понятия и характеристика основных понятий теории вероятностей. Основы комбинаторики, относительная частота события. Геометрическое определение вероятности и ее аксиоматическое построение. Закон распределения дискретной случайной величины.

    учебное пособие, добавлен 24.11.2014

  • Основные этапы развития математики. Особенности математического стиля мышления. Понятие и элементы множества. Случайный эксперимент, элементарные исходы. Сумма, произведение и разность математических событий. Теоремы сложения и умножения вероятностей.

    реферат, добавлен 17.03.2015

  • Сущность и разновидности случайных событий. Классическое определение вероятности и его ограниченность, а также характерные свойства. Относительная частота события, е определение и оценка, влияющие факторы. Исследование примеров вычисления вероятностей.

    контрольная работа, добавлен 30.03.2017

  • Определение содержания и сущности вероятности события, как численной меры степени объективной возможности этого события. Рассмотрение и анализ главных свойств вероятности. Исследование и характеристика основных теорем нахождения вероятности событий.

    доклад, добавлен 17.12.2015

  • Операции над событиями, элементы комбинаторики. Классический геометрический и статистический метод вычисления вероятностей. Формула полной вероятности и независимые испытания. Формула Байеса и Пуассона. Локальная и интегральная теорема Муавра-Лапласа.

    дипломная работа, добавлен 27.09.2012

  • Доказательство математического выражения, позволяющего находить вероятность появления события при независимых испытаниях. Варианты применения теоремы Бернулли при решении практических задач. Расшифровка модуля вероятности отклонения частоты события.

    краткое изложение, добавлен 12.04.2014

  • Элементарная теория вероятностей. Условная вероятность и независимость событий. Случайные величины и функции распределения. Предельные теоремы в схеме испытаний Бернулли. Проблема статистического вывода, методы оценки параметров. Доверительные интервалы.

    курс лекций, добавлен 15.09.2011

  • Понятия случайного события и величины. Теорема Пуассона, Ляпунова и Бернулли, утверждающая, что если вероятность события одинакова, то с ростом числа испытаний частота события стремится к вероятности и перестает быть случайной. Закон "безобидных" игр.

    реферат, добавлен 30.10.2013

  • Комбинаторика - наука о расположении элементов в определенном порядке и о подсчете числа способов такого расположения. Классические элементы комбинаторной теории вероятности. Рассмотрение правил суммы и умножения. Перестановка и размещение комбинаций.

    презентация, добавлен 26.07.2015

  • Случайные события, теоремы сложения и умножения вероятностей. Виды случайных величин. Математическое ожидание и дисперсия дискретной случайной величины. Закон больших чисел. Плотность распределения вероятностей. Нормальное и показательное распределение.

    курс лекций, добавлен 24.04.2015

  • Определение и анализ вероятностей событий. Рассмотрение формулы полной вероятности. Изучение формулы Бернулли. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Ознакомление с законом распределения случайной величины.

    контрольная работа, добавлен 24.03.2017

  • Предположение группы событий, объединение которых образует пространство элементарных исходов. Использование диаграммы Венна для теоремы сложения вероятностей и умножения. Применение формулы Байеса для условного исчисления априорной реализации гипотезы.

    реферат, добавлен 26.06.2013

  • Определение и проверка вероятности предельных теорем, а именно теоремы Бернулли и закона больших чисел Чебышева. Определение коэффициентов простой линейной регрессии, полученных в ходе проведенных испытаний, анализ и проверка статистических гипотез.

    курсовая работа, добавлен 06.08.2013

  • Типы событий: достоверные, невозможные, случайные. Понятие, предмет исследования комбинаторики, история возникновения и развития соответствующего научного направления. Применение методов теории вероятностей в разных сферах. Основные комбинаторные задачи.

    реферат, добавлен 03.05.2019

  • Особенность применения геометрического определения вероятности. Сущность появления одного из двух несовместимых данных. Характеристика теоремы о сложении возможностей совместных и несовместных событий. Главный анализ изучения умножения случайностей.

    практическая работа, добавлен 27.11.2015

  • Формула полной вероятности как следствие теорем о сложении и умножении вероятностей. Примеры применения формулы. Определение вероятности события А, которое может произойти только вместе с одним из событий образующих полную группу несовместных событий.

    презентация, добавлен 01.11.2013

  • Понятие алгебры событий. Рассмотрение стохастического эксперимента определения вероятности. Свойства суммы и произведения событий. Методы расчета совместного появления двух величин. Основные формулы для исчисления функции Лапласа и теоремы Байеса.

    методичка, добавлен 07.10.2015

  • Схема Бернулли, её определение и задачи, которые решаются по ней. Важное условие, без которого схема Бернулли теряет смысл. Возможные исходы при независимых испытаниях одинаковых вероятностей. Теорема и формула Бернулли, определение вероятностей событий.

    контрольная работа, добавлен 04.01.2015

  • Независимость событий и случайность отбора. Использование формулы Пуассона и формулы Бернулли. Закон распределения и числовые характеристики. Соотношение доверительной вероятности и коэффициента доверия. Несмещенные оценки математического ожидания.

    контрольная работа, добавлен 23.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.