Элементы теории графов

Основные понятия теории графов. Экстремальные пути и контуры на графах. Характеристика особенностей алгоритма Форда. Основы решения задачи поиска контура минимальной длины. Аспекты применения алгоритма Форда-Фалкерсона в задаче о максимальном потоке.

Подобные документы

  • Ориентированные и неориентированные графы, петля, кратные дуги и рёбра. Степень вершины, полустепень исхода и захода графа. Существование цикла и контура. Способы представления графов: матрица смежности, инцидентности, модифицированный список смежности.

    презентация, добавлен 26.07.2015

  • Порядок и сроки выдачи заданий на курсовое проектирование по дисциплине "Теория конечных графов и ее приложения". Содержание курсового проекта. Пример решения практической задачи на примере составления графика обслуживания одиноких пенсионеров района.

    методичка, добавлен 03.10.2017

  • Понятие и сущность изоморфизма графов, их машинное представление. Характеристика и специфика матрицы смежности и инцинденций, специфика массива ребер. Пошаговая проверка на изоморфизм двух графов вручную. Реализация программы на языке программирования.

    курсовая работа, добавлен 30.03.2015

  • Теория множеств. Способы задания, операции над множествами. Основные понятия соответствия и функции. Понятие мультимножества. Основные понятия теории графов, способы их задания. Сильно связанные графы и их компоненты. Планарность и двойственность.

    учебное пособие, добавлен 08.02.2015

  • Алгоритм построения графов сочетаний простых делителей. Структура графов первой и второй версий. Составление таблиц факторизаций на любом отрезке натурального ряда и установление закона распределения простых чисел. Элементарные методы в теории чисел.

    статья, добавлен 26.05.2017

  • Алгоритмы поиска маршрута с наименьшей стоимостью в сетях с коммутацией пакетов и объединенных сетях. Алгоритм Дейкстры, Беллмана-Форда. Расчет пути с минимальным количеством переходов. Преобразование схемы в неориентированный невзвешанный граф.

    контрольная работа, добавлен 12.06.2013

  • Теория и история возникновения графов. Задача о Кенигсбергских мостах и ее решение "одним росчерком" графа. Понятие эйлерова графа, его свойства. Значение и примеры применения графов для решения математических задач, головоломок, задач на смекалку.

    презентация, добавлен 18.03.2016

  • Мультиграф, в котором не допускаются петли, но пары вершин могут соединяться более чем одним ребром. Теоретико-множественное представление графов. Вид двоичного дерева поиска, в котором ключами являются латинские символы, упорядоченные по алфавиту.

    курсовая работа, добавлен 15.01.2014

  • Неориентированные и ориентированные графы, основные понятия и теории. Задача о максимальном потоке в сети. Приложения теоремы о потоках. Теория автоматов, операции над языками. Критерий распознаваемости и нераспознаваемости языка конечным автоматом.

    учебное пособие, добавлен 25.12.2011

  • Элементы теории графов. Общая схема метода динамического программирования. Построение сетевого графика технологического комплекса. Критические пути и нахождение времени завершения комплекса работ. Задача о построении минимального остовного дерева.

    учебное пособие, добавлен 01.04.2014

  • Основы задач о назначениях в теории. Изучение истории создания венгерского метода решения задач о назначениях. Описание алгоритма решения данным методом за время порядка полинома, не зависящего от величины стоимостей. Реализация задачи о назначениях.

    курсовая работа, добавлен 15.05.2014

  • История появления теории графов, ее основные понятия, сфера практического приложения. Наиболее эффективные алгоритмы нахождения кратчайшего пути. Методика определения кратчайших путей при помощи графа. Алгоритм Дейкстры. Решение задач практической части.

    курсовая работа, добавлен 14.01.2011

  • Построение модели системы организации маршрутов в транспортной системе с предфрактальных графов. Сравнительный анализ вычислительной сложности предложенного алгоритма с известным алгоритмом Прима. Алгоритм Бета 2 выделения наибольших максимальных цепей.

    реферат, добавлен 20.05.2017

  • Минимизация логической функции с помощью карт Карно. Процесс построения таблицы истинности. Основные временные параметры сетевого графика с детерминированным временем. Определение раннего и позднего срока наступления события. Алгоритм Форда-Фалкерсона.

    учебное пособие, добавлен 30.11.2013

  • Исследование математической теории о совокупности непустого множества вершин и ребер. Анализ кратности неориентированных и ориентированных дуг. Характеристика понятия эквивалентности при множестве вершин. Обоснование гомеоморфного подразбиения дуги.

    лекция, добавлен 18.10.2013

  • Понятие цифрового автомата, история разработки, современные тенденции. Составление таблицы соответствия. Основные понятия теории графов. Минимизация абстрактного автомата Мили. Исключение недостижимых состояний. Определение классов совместимости.

    контрольная работа, добавлен 11.04.2012

  • Способы задания множеств и бинарных отношений. Основные логические операции. Представление булевых функций. Понятия логики предикатов. Описание теории графов, конечных автоматов, языков и элементов кодирования. Расчет максимального потока в сетях.

    учебное пособие, добавлен 13.01.2015

  • Матрица смежности графа с множеством вершин. Построение ориентированного графа (орграфа) по заданной матрице смежности. Решение задачи линейного программирования с двумя переменными. Условие неотрицательности переменной. Прямая целевой функции на минимум.

    контрольная работа, добавлен 17.01.2018

  • Понятие алгоритма, неформальная вычислимость. Частично-рекурсивные функции. Элементарная арифметика и неполнота. Арифметические функции и отношения. Варианты теории чисел. Теорема и последовательность Гудстейна. Задачи разрешения и задачи оптимизации.

    учебное пособие, добавлен 07.04.2016

  • Поняття опуклих множин. Аналіз властивостей допустимої множини задач лінійного програмування. Характеристика небазисних змінних. Особливості застосовування алгоритмів симплекс-методу та Форда-Фалкерсона. Розгляд двоїстих задач та теореми двоїстості.

    шпаргалка, добавлен 12.09.2012

  • Дерево как связный граф, не содержащий циклов. Перечень основных свойств деревьев. Общее понятие про орграф. Содержание теоремы А. Кэлли. Сущность понятия "подграф". Пример алгоритма построения каркаса в связном графе, особенности его обоснования.

    реферат, добавлен 18.04.2012

  • Программирование в управлении как процесс распределения ресурсов. Определение метода и задачи квадратичного программирования. Анализ конечного алгоритма решения задачи квадратичного программирования. Применение конечного алгоритма решения на практике.

    курсовая работа, добавлен 23.02.2014

  • Изучение принципов установления изоморфизма или изоморфного вложения между заданными структурами при решении комбинаторно-логических задач и оптимизационных на графах. Пример решения задач распознавания изоморфизма. Определение вершины в алгоритме.

    лекция, добавлен 23.01.2017

  • Игра как математическая модель конфликтной ситуации. Основные понятия теории игр, ее ключевые понятия. Парные матричные игры с нулевой суммой. Характеристика методов решения матричных игр. Выбор пары альтернатив. Статистические игры (игры с "природой").

    презентация, добавлен 20.09.2017

  • Рассмотрение и анализ различных алгоритмов нахождения кратчайшего пути. Выявление основных методов решения задач поиска кратчайшего пути и их обоснование. Создание алгоритма, находящего кратчайший путь в ориентированном графе, его программная реализация.

    курсовая работа, добавлен 23.09.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.