Исследование фредгольмовой разрешимости смешанных задач для параболического уравнения
Понятие дифференцируемости на замкнутой области. Анализ пространства Соболева в теоретических и прикладных вопросах математической физики и функционального анализа. Обзор теоремы о пополнении интеграла Лебега. Множество метрического пространства.
Подобные документы
Рассмотрение уравнений второго порядка, разрешенных относительно второй производной. Формулировка и доказательство теоремы Коши (о существовании и единственности решения дифференциального уравнения). Геометрический смысл теоремы, ее общее решение.
презентация, добавлен 17.09.2013Математические модели ряда задач механики сплошных сред, физики и техники, параметры которых резко отличаются в окрестности линии сопряжения. Доказательство единственности решения задачи. Вычисление значения криволинейного интеграла по границе области.
лекция, добавлен 19.05.2016- 103. Эйлеровы интегралы
Свойства и методы вычисления Эйлерова интеграла первого рода, его функции. Особенности вычисления Эйлерова интеграла второго рода. Применение правила Лейбница. Особенности вычисления интеграла Раабе. Использование метода математической индукции.
контрольная работа, добавлен 03.06.2012 Использование принципа линейной нормальной классификации объектов в многомерных пространствах признаков для построения классификаторов в случае множеств сложной структуры. Построение алгоритма проверки включения заданной точки пространства в множество.
статья, добавлен 30.05.2017- 105. Теория Фалеса
Применение теоремы Фалеса для деления отрезка на n равных частей. Интерпретация теоремы о пропорциональных отрезках. Обоснование и доказательство правдивости теоремы Фалеса в планиметрии. Использование теоремы Фалеса в решении геометрических задач.
презентация, добавлен 01.02.2016 - 106. Алгебра множеств
Понятие и направления исследования множеств, их классификация и разновидности, свойства и отличия. Мощность множества и основные критерии ее оценки. Метрические пространства: внутренность, внешность и граница. Непрерывные отображения. Аксиомы счетности.
курс лекций, добавлен 28.03.2012 Аксиомы линейного пространства. Операции сложения и умножения элемента на число. Линейная комбинация векторов с коэффициентами. Определение координат вектора относительно базиса. Разложение элемента по базису. Понятие линейной векторной зависимости.
лекция, добавлен 29.09.2013Понятие пространства элементарных событий. Сведения из теории конечных множеств и комбинаторики. Декартово произведение как одна из важнейших конструкций математики. Изучение взаимосвязей логики, интуиции и приложений. Регламент деятельности учителя.
книга, добавлен 06.05.2013Изучение возможности решения уравнения гипотезы Била через рассмотрения таблицы степеней отобранных автором чисел. Установление закономерностей их повторения в рамках обобщение теоремы Ферма. Исследование свойства уравнения, не оговоренного математиком.
статья, добавлен 03.03.2018Исследование этапов вычисления определенных интегралов с помощью формулы Ньютона-Лейбница. Нахождение первообразной подынтегральной функции. Доказательство основной теоремы анализа. Характеристика операций дифференциального и интегрального исчислений.
презентация, добавлен 18.09.2013Методика применения метода конечных элементов к решению уравнения теплопроводности. Простая процедура учета граничных условий задачи. Сравнение затрат машинного времени и погрешности расчетов при использовании различных видов элементов и функций формы.
статья, добавлен 30.10.2016Сравнения в кольце целых чисел. Основные теоремы о сравнениях. Сравнения первой степени с одной переменной. Теоремы о неразрешимости и разрешимости сравнений. Сравнения по простому модулю с одним и с несколькими неизвестным. Системы сравнений, их виды.
курсовая работа, добавлен 09.06.2016- 113. Задачи с нормальными производными в граничных условиях для нелинейных гиперболических уравнений
Разработка способа редукции задач с нормальными производными в граничных условиях к задачам Гурса. Построение картины их разрешимости. Для уравнения Лиувилля построены в явном виде решения задач с граничными условиями первого, второго и третьего рода.
автореферат, добавлен 17.12.2017 - 114. Элементы теории поля
Понятие и сущность гладкой поверхности, порядок и принципы определения ее площади. Вычисление поверхностных интегралов первого и второго порядка. Скалярное поле как совокупность двух множеств: множества точек пространства и соответствующих чисел.
лекция, добавлен 18.10.2013 Критерии единственности решений задач для дифференциального уравнения в частных производных. Изучение краевых задач на сопряжения с нелокальным граничным условием, связывающим значения искомого решения на противоположных сторонах прямоугольной области.
статья, добавлен 31.05.2013Суть понятия "дивергенция векторного поля", ее свойства, координатное и инвариантное определение. Скалярные и векторные поля. Применение Теоремы Остроградского-Гаусса для преобразования объёмного интеграла в интеграл по замкнутой поверхности и наоборот.
реферат, добавлен 23.01.2022- 117. Интеграл Римана
Основные свойства множества числовых последовательностей вещественных чисел. Интеграл Лебега и его особенности. Характеристика главных аспектов интеграла. Анализ классов нормированных пространств. Изучение связи между различными типами сходимости.
реферат, добавлен 19.02.2014 - 118. Алгебра
Линейные уравнения и операции над матрицами. Обратная матрица и матричные уравнения. Линейные пространства, ранг матрицы и его приложения. Действия с комплексными числами. Группы, подгруппы, порядки элементов. Многочлены от одной и нескольких переменных.
курс лекций, добавлен 21.11.2011 Функция как математическое понятие, отражающее однозначную парную связь элементов одного множества с элементами из другого множества. Топология пространства арифметических векторов. Компактные множество и линейные отображения. Теорема Кантора и Бореля.
методичка, добавлен 07.08.2015Методика определения определенного интеграла. Нахождение площадей плоских фигур. "Неопределенный интеграл" или "множество всех первообразных", основные понятия и формулы. Нахождение интеграла (интегрирование), исходя из его геометрического смысла.
контрольная работа, добавлен 11.11.2010Понятие линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Неравенство Коши-Буняковского, неравенство треугольника и множества: связные, несвязные, ограниченные, неограниченные. Замкнутость и компактные множества.
лекция, добавлен 21.09.2017Элементы дискретной математики. Сущность математической логики. Операции над множествами. Правила, формулы дифференцирования. Неопределенный интеграл, методы интегрирования. Основы теории вероятностей и математической статистики. Понятие и предел функции.
учебное пособие, добавлен 03.07.2013Исследование многоточечной краевой задачи, в которой функция удовлетворяет условиям Каратеодори. Вид трехточечной задачи для дифференциального уравнения второго порядка. Рассмотрение вспомогательного утверждения о разрешимости операторных уравнений.
статья, добавлен 26.04.2019Исследование вопросов линейной алгебры и физики для активного и неформального усвоения: основные понятия и теоремы, формулы, решение практических задач, упражнения для самостоятельной работы, для решения на практических занятиях и для домашних заданий.
краткое изложение, добавлен 25.03.2011Формулировка и сущность теоремы Паскаля. Теорема о циклических шестиугольниках и её доказательство, точки четвёртого порядка. Понятие оператора цикла. Обоснование использования аппарата алгебраических подстановок. Аналитическое исследование множества.
научная работа, добавлен 04.05.2012