Интегралы, зависящие от параметра. Двойные интегралы. Криволинейные интегралы

Собственные и несобственные интегралы, зависящие от параметра. Признаки, свойства и вычисление двойного интеграла в случае прямоугольной и криволинейной области. Определение интеграла Эйлера первого рода (Бета-функция) и второго рода (Гамма-функция).

Подобные документы

  • Изложение интегральных характеристик полей: дивергенция и ротор, их физический смысл; криволинейные и поверхностные интегралы, их вычисление; поток и дивергенция векторного поля; циркуляция и ротор векторного поля; теоремы Гаусса-Остроградского и Стокса.

    курсовая работа, добавлен 20.03.2014

  • Основные свойства определенного интеграла. Вычисление площадей плоских фигур, длины дуги кривой, объемов тел, площадей поверхностей. Признаки сравнения для несобственных интегралов первого, второго рода. Формула Ньютона-Лейбница. Интегрирование по частям.

    учебное пособие, добавлен 19.12.2013

  • Таблица интегралов. Некоторые свойства неопределенного интеграла. Интегрирование методом замены переменой или способом подстановки. Интегрирование по частям. Простейшие рациональные дроби и их интегрирование. Интегралы от иррациональных функций.

    лекция, добавлен 25.06.2021

  • Анализ способа вычисления двойных интегралов путем сведения их к повторному интегралу. Ограничение функции сверху и снизу двумя непрерывными кривыми в области d. Алгоритм исчисления двойного интеграла в прямоугольных координатах и замена его переменных.

    презентация, добавлен 17.09.2013

  • Понятие и сущность интеграла Лебега как обобщение интеграла Римана на широкий класс функций. Определение и свойства интеграла Лебега: линейность, возможность безотказного перехода к пределу. Сходимость интегралов Лебега от последовательностей функций.

    эссе, добавлен 30.06.2016

  • Теории неопределенных интегралов, интегралов Римана для функций одного переменного и теории числовых рядов. Суммы Дарбу, их свойства. Площадь криволинейной трапеции, объем тела вращения. Определение числовых рядов, их сходимость и преобразование.

    методичка, добавлен 06.08.2015

  • Понятие интеграла движения. Независимые интегралы движения для замкнутой системы. Асимптотическая аддитивность интегралов движения. Формулировка, доказательство теоремы Нётер. Некоторые замечания относительно теоремы Нётер. Сохранение аддитивной величины.

    контрольная работа, добавлен 19.11.2017

  • Изучение интегральных вычислений в курсе математического анализа. Определение риманового числа. Понятие непрерывной периодической функции. Анализ признаков сходимости ряда. Доказательство теорем о несобственном интеграле непрерывной периодической функции.

    курсовая работа, добавлен 02.10.2021

  • Вычисление площади фигуры с помощью двойного интеграла в полярных координатах. Расчет объема тела с помощью тройного интеграла. Исследование сходимости числового ряда. Разложение функции f(x) в ряд Фурье. Общее и частное решение дифференциального уравнени

    контрольная работа, добавлен 22.01.2012

  • Решение задачи на нахождение предела с применением правила Лопиталя. Составление уравнения касательной к графику функции. Исследование функции и построение ее графика. Пример вычисления определенного интеграла, а также решения дифференциальных уравнений.

    контрольная работа, добавлен 01.03.2017

  • Рассмотрение эллипса как трехмерной функции, все точки которой лежат в одной плоскости под углом к плоскости круга, для нахождения решения эллиптического интеграла. Образование семейства кривых от окружностей в плоскости. Определение длины дуги эллипса.

    статья, добавлен 03.03.2018

  • Понятие кратных (двойных и тройных) интегралов, криволинейных и поверхностных. Основные определения и формулировки и базовые теоремы Грина, Стокса и Гаусса-Остроградского. Специфика их применения к решению соответствующих задач геометрии и механики.

    учебное пособие, добавлен 22.10.2014

  • Интегральная сумма для криволинейного интеграла. Порядок ее вычисления путем замены в подынтегральном выражении переменных Х и У через параметр, представление дифференциала дуги dS как функции параметра. Примеры вычисления криволинейных интегралов.

    презентация, добавлен 17.09.2013

  • Исследование на сходимость числового ряда. Разложение в окрестности определенной точки в степенной ряд функции. Решение задачи Коши для уравнения. Определение радиуса и интервала сходимости степенного ряда и общего решения дифференциального уравнения.

    контрольная работа, добавлен 12.01.2013

  • Определение определённого интеграла. Длина дуги кривой, прямоугольные координаты. Теорема Лагранжа о конечном приращении функции. Способы нахождения площади криволинейной трапеции. Площадь поверхности вращения. Строгое изложение теории интеграла О. Коши.

    курсовая работа, добавлен 23.04.2011

  • Особенности вычисления двойного интеграла в прямоугольных декартовых координатах. Границы изменения переменной интеграции при постоянном значении второго аргумента. Правила определения тройного интеграла посредством ряда однократных интегрирований.

    лекция, добавлен 13.12.2015

  • Неопределенные, определенные и несобственные интегралы. Общее решение линейного дифференциального уравнения. Нахождение площади фигуры, ограниченной линиями. Частное решение дифференциального уравнения, удовлетворяющего заданным начальным условиям.

    контрольная работа, добавлен 09.12.2012

  • Основные аспекты вычисления объема тела, образованного вращением фигуры, ограниченной линиями. Особенности поиска неопределенных интегралов. Основы применения формулы Ньютона-Лейбница. Расчет площади криволинейной трапеции, ограниченной линиями.

    контрольная работа, добавлен 09.03.2015

  • Основы линейной, векторной алгебры, аналитической геометрии и математического анализа. Криволинейные и поверхностные интегралы, дифференциальные уравнения, элементы теории поля и теории функций комплексного переменного, основы операционного исчисления.

    курс лекций, добавлен 19.11.2014

  • Вычисление определенного и неопределенного интеграла с помощью формулы интегрирования по частям выражения. Нахождение площади фигуры, ограниченной линиями. Построение графика функций, нахождение точек пересечения. Пример расчета несобственного интеграла.

    задача, добавлен 09.06.2014

  • Понятие первообразной функции и неопределенного интеграла. Правила интегрирования. Площадь криволинейной трапеции. Формула Ньютона-Лейбница и первообразная функция. Вычисление площади области. Формулы вычисления. Площадь фигуры, ограниченная параболой.

    лекция, добавлен 26.07.2015

  • Понятие интеграла, основная идея его построения. Сущность и структура простых функций. Интеграл Лебега от простых функций. Определение интеграла Лебега. Основные свойства и предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега.

    курсовая работа, добавлен 20.10.2010

  • Определенные и неопределенные интегралы функций и их свойства. Метод непосредственного интегрирования. Интегрирование элементарных и рациональных дробей, биноминальных дифференциалов. Универсальная тригонометрическая подстановка. Теорема Ньютона-Лейбница.

    курс лекций, добавлен 05.03.2016

  • Исследование основных признаков сравнения несобственных интегралов 1 и 2 рода. Характеристика понятия абсолютно и условно сходящегося несобственного интеграла. Определение несобственного интеграла по бесконечному промежутку и от неограниченной функции.

    презентация, добавлен 18.09.2013

  • Изучение сущности определенного интеграла – средства исследования в математике, физике, механике. Определение площади криволинейной трапеции. Ознакомление с функциями определенного интеграла. Рассмотрение геометрического смысла определенного интеграла.

    контрольная работа, добавлен 17.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.