Сложение и вычитание дробей с одинаковыми знаменателями
Особенности записи обыкновенных дробей в древнем Египте. Сложение и вычитание обыкновенных дробей с разными знаменателями. Приведение дробей к одинаковому знаменателю, используя основное свойство дроби. Изучение правил сложения и вычитания дробей.
Подобные документы
Двоичная система счисления: основные сведения и понятия. Представление двоичных чисел и перевод их в десятичные. Преобразование десятичных чисел в двоичные. Арифметические действия над двоичными числами: сложение, вычитание, умножение, деление.
реферат, добавлен 21.08.2008Порядок выполнения действий с матрицами: сложение (вычитание), транспонирование матриц, их умножение. Действия с матрицами третьего порядка. Понятие обратной матрицы, ее обозначение и пример нахождения, последовательность действий при решении задачи.
лекция, добавлен 11.10.2012История возникновения счета и чисел. Число, как основное понятие математики. Исследование множеств чисел с применением кругов Эйлера. Множество натуральных чисел и их свойства. Дроби в Древнем Египте. Четыре действия арифметики. Десятичные дроби.
реферат, добавлен 21.03.2013Определение понятия "комплексные числа", их алгебраическая форма, вычисления суммы и произведения, основные этапы изучения. Тригонометрическая форма комплексного числа, его геометрическая модель. Основные действия: сложение, вычитание, умножение, деление.
презентация, добавлен 26.02.2015Понятие комплексного числа, история развития. Свойства комплексных чисел, действия с ними: сложение, вычитание, возведение в степень, извлечение корня, графическое изображение, перевод в тригонометрическую форму. Применение комплексных чисел в геометрии.
реферат, добавлен 02.04.2022- 81. Алгебра матриц
Базовые действия над матрицами: сложение, вычитание, умножение на число, умножение матрицы на матрицу, также операция деления на матрицу. Теорема невырожденной квадратной матрицы. Понятие обратной матрицы и решение уравнения. Базисный минор и ранг.
реферат, добавлен 07.04.2015 Изучение основных понятий векторной алгебры. Определение базиса вектора, коллинеарных и компланарных векторов. Изучение проекции на ось и ее свойств. Рассмотрение сложения векторов: правил треугольника и параллелограмма. Формулирование теоремы Фалеса.
лекция, добавлен 26.01.2014Параллельность прямых, прямой и плоскости, взаимное расположение прямых в пространстве. Перпендикулярность прямой и плоскости. Понятие вектора в пространстве, сложение и вычитание векторов. Координаты точки и координаты вектора. Определение объема тел.
учебное пособие, добавлен 24.02.2014Основные операции над матрицами: сложение, вычитание, умножение, а также умножение матрицы на число. Понятие определителя, его свойства и вычисление. Однородная система n линейных уравнений с n неизвестными. Решение системы уравнений методом Гаусса.
реферат, добавлен 07.04.2011- 85. Понятие матриц
Сущность матрицы как совокупности m•n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Главные свойства элементов, их порядок записи. Характеристика основных видов: треугольная, квадратная. Порядок сложения и умножения матриц.
курсовая работа, добавлен 03.12.2013 Геометрическая интерпретация комплексного числа. Арифметические операции над комплексными числами. Геометрическое изображение суммы, вычитание и деление, геометрическое изображение разности, тригонометрическая форма, свойства модуля и аргумента.
курсовая работа, добавлен 29.11.2014- 87. Дуальные числа
Алгебра дуальных чисел. Операции сложения и вычитания для дуальных чисел. Разность параметров делимого и делителя. Основное свойство мультипликативности. Закон отображения области определения в область значений. Классическое определение дифференциала.
разработка урока, добавлен 21.08.2017 Линейные операции с матрицами: сложение и умножение. Замена элементов матрицы на соответствующие алгебраические дополнения с последующим транспонированием. Разложение определителя по его столбцу. Элементы главной диагонали. Поэлементное сложение данных.
лекция, добавлен 29.09.2013Математические подходы к определению вероятности, ее роль в науке. Классический подход к теории вероятности, понятие равновозможности. Область применения геометрической вероятности. Доказательства и примеры теорем сложения и умножения вероятностей.
реферат, добавлен 15.06.2010Рассмотрение систем линейных уравнений. Общие определения, связанные с понятием матрицы. Алгоритмы составления обратной матрицы. Сложение, умножение матриц на число, обращение и транспонирование матрицы. Сочетательный и переместительный законы.
лекция, добавлен 18.04.2014Анализ методической и психолого-педагогической литературы. Роль устных вычислений в математике, основные виды упражнений. Нахождение значений математических выражений. Формы восприятия устного счета. Формирование вычислительных навыков и приёмом.
контрольная работа, добавлен 19.02.2013Построение множества комплексных чисел. Рассмотрение прямоугольной (декартовой) системы координат на плоскости. Операции сложения и умножения с векторами. Комплексные функции действительного аргумента. Вычитание равенств чисел из формулы Эйлера.
лекция, добавлен 09.07.2015Изучение понятий операций конъюнкции (логического умножения) и дизъюнкции (логическое сложение) над предикатами, заданными на множествах. Рассмотрение их свойств и приведение примеров доказательств равенства и тождества с использованием кругов Эйлера.
презентация, добавлен 05.01.2014Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.
контрольная работа, добавлен 02.12.2012Характеристика особенностей сложения, вычитания и деления комплексных чисел. Изучение основных понятий и правил векторной алгебры. Анализ операций над скалярными и векторными функциями в декартовой, цилиндрической и сферической системах координат.
лекция, добавлен 21.09.2014История зарождения и развития комбинаторики, ее применение в теории вероятностей, криптографии, терминологии и математике. Биномиальные коэффициенты ("треугольник Паскаля"). Примеры комбинаторных конфигураций и задач. Правила сложения и умножения.
реферат, добавлен 12.11.2016Сведение краевой задачи к задаче Коши. Поиск параметрического семейства решений для системы уравнений. Понятие уравнения "сшивания". Метод стрельбы для нормальной системы обыкновенных дифференциальных уравнений. Геометрическая интерпретация метода.
курсовая работа, добавлен 22.04.2011Формирование умения выполнять тождественные преобразования, используя свойства логарифмов. Область определения функции. Логарифмы с одинаковыми и разными основаниями. Основные свойства логарифмов. Вычисление произведения, частного и степени логарифмов.
разработка урока, добавлен 12.12.2011Особенности решения уравнения с двумя неизвестными. Построение графика, определение координат. Количество решений двух линейных уравнений с двумя переменными. Отличительные черты способа подстановки и метода сложения. Расчет верного числового равенства.
презентация, добавлен 22.11.2015Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.
курсовая работа, добавлен 11.06.2014