Теоретические основы алгебры и геометрии
Определение и свойства матриц, операции над ними. Практическое значение правила Крамера. Суть метода Гаусса. Взаимное расположение прямых на плоскости. Проекции вектора на ось. Сущность инверсии в перестановке чисел. Скалярное произведение векторов.
Подобные документы
Понятие и сущность вектора, скалярные и векторные величины. Общая характеристика особенностей векторных величин. Схематическое изображение векторов, их описание и характеристика построения. Описание сложных векторов и сущность и положения закона сложения.
реферат, добавлен 01.03.2009Вектор - элемент векторного пространства (некоторого множества с двумя операциями на нем, которые подчиняются восьми аксиомам). Свободный и связанный векторы. Евклидовая норма и правило параллелограмма. Скалярное произведение и умножение вектора на число.
контрольная работа, добавлен 24.09.2014Расчет угла между ребрами пирамиды средствами векторной алгебры. Составление уравнения плоскости, проходящей через прямую. Решение методом Гаусса системы DX=K. Расчет размерности и базиса линейной оболочки векторов. Расчет кривых в системе координат XOY.
контрольная работа, добавлен 08.03.2011- 104. Сфера и шар
Сфера - фигура, состоящая из всех точек пространства, удалённых от данной точки на данном расстоянии. Понятие шара. Взаимное расположение сферы и плоскости. Точка их касания. Определение площади сферы. Доказательство теорем о касательной к плоскости.
реферат, добавлен 08.05.2013 - 105. Тензорный анализ
Тензор - объект линейной алгебры, преобразующий элементы пространства. Создание абстрактных моделей в математических терминах. Произведение длин векторов и косинуса угла. Понятия скаляра, вектора и матрицы. Тензорный анализ и дифференциальная геометрия.
реферат, добавлен 25.02.2021 - 106. Высшая математика
Определители матриц. Векторное произведение векторов, его свойства. Линейные преобразования пространства. Прямая в пространстве. Виды уравнений прямой. Гипербола и парабола. Конусы и цилиндры. Непрерывные функции и их свойства. Производная и дифференциал.
шпаргалка, добавлен 11.05.2010 Рассмотрение методов проецирования точки и кривой. Система прямоугольных координат плоскостей. Взаимное расположение прямых линий. Расчет катетов прямоугольного треугольника. Принадлежность точки и прямой плоскости. Обзор способов преобразования чертежа.
учебное пособие, добавлен 28.12.2013Понятие, виды и операции над векторами. Определение положения точки в декартовой системы координат. Отличия векторных от скалярных величин. Свойства смешанного произведения. Решения системы уравнений методом Крамера. Расчёт объема и высоты пирамиды.
лекция, добавлен 21.09.2017Основные свойства центрального и параллельного методов проецирования. Комплексные чертежи точки, прямой, кривой, плоскости, их взаимное положение. Построение разверток, аксонометрические проекции. Решение расчетно-графических работ, тестовые вопросы.
учебное пособие, добавлен 15.11.2014Понятие и особенности перестановок чисел. Определение и свойства определителя. Свойства минора и алгебраического дополнения. Теорема разложения определителя по строке или столбцу. Примеры вычисления и разложения по первой строке определителей матриц.
лекция, добавлен 24.11.2015Первые три аксиомы и взаимное расположение точек и прямых, расположение одной точки между двумя прямыми. Формулировка аксиомы, наложение, отрезок и прямые, луч и неразвернутый угол. Система аксиом планиметрии, завершающая аксиома параллельных прямых.
презентация, добавлен 13.04.2012Изучение матриц как инструментов для записи различных математических преобразований. Характеристика метода решения систем линейных уравнений методом Гаусса. Исследование свойства сложения матриц одинакового размера и умножения на действительное число.
лекция, добавлен 15.11.2010Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательство некоторых основных планиметрических теорем: длины отрезка, коллинеарности трех точек, четырех точек одной окружности, правильного треугольника.
курсовая работа, добавлен 22.04.2011Определение перпендикулярности прямых в пространстве, их расположение относительно друг друга. Определение прямой, перпендикулярной плоскости. Примеры и геометрические задачи, представляющие графическую интерпретацию прямой, перпендикулярной плоскости.
презентация, добавлен 29.01.2015Понятие декартова базиса. Определение радиус-вектора точки и длины вектора. Описание свойств параболы. Исследование системы уравнений на совместность и её решение. Построение плоскости через заданные прямую и точку. Вычисление произведения векторов.
контрольная работа, добавлен 22.08.2014- 116. Декартовы координаты
Расстояние между точками. Середина отрезка, центр тяжести многоугольника. Задача деления заданного отрезка в любом заданном отношении. Расстояния между точками на окружности. Скалярное произведение векторов. Длина векторного произведения векторов.
контрольная работа, добавлен 05.12.2018 Определение координат вектора в заданном базисе. Разработка уравнения линии, каждая точка которой отстоит от заданной точки А вдвое дальше, чем от прямой. Доказательство совместимости функции, решение тремя способами, расчет базиса и размерности решений.
контрольная работа, добавлен 12.05.2015История зарождения перспективного изображения с использованием аксонометрии. Особенности центральной сферической проекции при зрительном восприятии чертежа. Свойства перспективных изображений. Правила расположения точек в перпендикулярной плоскости.
статья, добавлен 22.03.2016Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.
учебное пособие, добавлен 19.01.2015- 120. Теорема Коши-Бине
Назначение матриц в системах линейных уравнений, операции над матрицами, правила их сложения матриц и умножения на скаляр, транспонирование произведения двух матриц. Понятие и свойства определителя квадратной матрицы, доказательство теоремы Коши-Бине.
курсовая работа, добавлен 11.01.2015 - 121. Основы математики
Множества и операции над ними. Декартово произведение множеств. Понятие и свойства алгоритма. Аксиоматический метод. Понятие о комбинаторной задаче. Математические утверждения и их структура. Основы математической логики. Соответствия и отношения.
курс лекций, добавлен 25.09.2017 Характеристика векторных величин. Понятие единичного вектора. Линейные операции с векторами и действия над векторами в координатной форме. Деление отрезка в заданном отношении. Координаты вектора в прямоугольной системе. Условие коллинеарности векторов.
презентация, добавлен 28.09.2017Вычисление определителя матрицы. Нахождение обратной матрицы, выполнение проверки. Решение системы линейных уравнений методом обратных матриц и методом Гаусса. Приведение расширенной матрицы к треугольному виду. Расчет координат нормального вектора.
контрольная работа, добавлен 11.12.2012Правила решения систему линейных алгебраических уравнений методом Гаусса и Крамера. Порядок разложения вектора. Формирование уравнения медианы. Вычисление косинуса внутреннего угла треугольника. Расчет угла между ребрами пирамиды и площади грани.
контрольная работа, добавлен 25.08.2015- 125. Скалярное поле
Рассмотрение градиента и производной по направлению вектора. Основные характеристики скалярного поля. Правила вычисления частных производных. Расчет градиента поля в точке. Изучение скалярной величины в пространстве. Дифференцирование поля по переменной.
лекция, добавлен 08.05.2015