Великий математик Жозеф Луи Лагранж
Биография и научная деятельность Л. Лагранжа. Разработка учёным метрической системы мер, весов и нового календаря. Опубликование в Париже "Теории аналитических функций". Решение дифференциальных уравнений. Награждение графа орденом Почётного легиона.
Подобные документы
Определение абсолютной и относительной погрешности численного результата. Решение уравнений с одной неизвестной. Понятие кратного корня. Методы уточнения корней простой итерации. Решение систем линейных уравнений. Особенности интерполяции функций.
курс лекций, добавлен 08.02.2015Области прикладного применения систем компьютерной математики для численных и аналитических расчетов. Возможности программы Wolfram Mathematica. Примеры решения обыкновенных дифференциальных уравнений и геометрических задач в системе Wolfram Mathematica.
статья, добавлен 16.07.2018Метод Эйлера как простейший численный метод решения систем обыкновенных дифференциальных уравнений. Описание данного метода, дающего решение в виде таблицы приближенных значений искомой функции, его исправления и модификации. Оценка погрешности.
реферат, добавлен 27.10.2019Основные понятия теории погрешностей и этапы решения задачи на компьютере. Численное решение скалярных нелинейных уравнений методами Гаусса, простой итерации и Гаусса-Зейделя. Численное решение задач Коши для обыкновенных дифференциальных уравнений.
учебное пособие, добавлен 26.03.2014Численное решение системы дифференциальных уравнений. Рассмотрение сущности задачи Коши, краевых задач и задач на собственные значения. Интерполяция многочленом Ньютона с разделенными разностями. Условная минимизация функций нескольких переменных.
курсовая работа, добавлен 22.02.2019Задача Шварца для вектор-функций, аналитических по Дуглису. При выполнении определенных условий на матрицу она сведена к задаче Дирихле для равносильной ей системы однородных линейных дифференциальных уравнений в частных производных второго порядка.
статья, добавлен 31.05.2013Определение псевдопараболических уравнений по характеру свойств решений. Решение задачи сопряжения для псевдопараболических уравнений третьего порядка с использованием тождества Лагранжа, функций Грина и Римана. Определение условий разрешимости уравнения.
статья, добавлен 18.05.2016Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.
лабораторная работа, добавлен 16.06.2014Понятие степенного ряда и области его сходимости. Введение функций С(x) и S(x), формулы их сложения и вывод основных свойств. Тригонометрические функции как решения системы двух дифференциальных уравнений первого порядка. Применение рекуррентных формул.
курсовая работа, добавлен 09.03.2012Решение задачи Коши для жестких систем дифференциальных уравнений. Исследование (m,к)-методов решения жестких задач, в которых на каждом шаге два раза вычисляется часть системы дифференциальных уравнений. Построение (4,2)-метода максимального порядка.
статья, добавлен 31.05.2013Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Определение точки равновесия (нулевого решения) однородной системы линейных уравнений. Расчет поведения фазовых кривых линейной автономной системы на плоскости.
контрольная работа, добавлен 29.11.2015- 62. Неравенства Коши
Коши Луи (1789-1857 гг.) - знаменитый французский математик. Изучение теории дифференциальных уравнений. Комплексные пространства со скалярным произведением. Определение предела математической последовательности. Множества в Евклидовом Пространстве.
реферат, добавлен 06.10.2017 - 63. Теорема Нётер
Доказательство теоремы Нетер, поиск аддитивных или асимптотически аддитивных интегралов движения в виде явных функций координат и скоростей при заданном виде функции Лагранжа без интеграции уравнений. Форма уравнений Лагранжа-Эйлера и ее инвариантность.
курсовая работа, добавлен 10.11.2010 Приближённые методы решения систем линейных алгебраических уравнений. Интерполяция, аппроксимация; интерполяционный многочлен. Приближённое интегрирование функций. Численное решение трансцендентных, нелинейных и обыкновенных дифференциальных уравнений.
курс лекций, добавлен 26.09.2017Особенности системы дифференциальных уравнений как автономной системы для функций x (t) и y (t). Специфика картины фазовых кривых, называемой фазовым портретом системы. Анализ расположения траекторий, определяемого корнями характеристического уравнения.
курсовая работа, добавлен 29.11.2015Определение, виды, порядок, а также способы решения дифференциального уравнения. Методика решения уравнений с разделяющимися переменными. Сущность методов Бернулли и Лагранжа. Формулы для нахождения общего решения однородного и неоднородного уравнений.
шпаргалка, добавлен 10.09.2009Анализ приемов нахождения решений дифференциальных уравнений через элементарные или специальные функции. Принцип сжатых отображений. Понятие метрического пространства. Решение задач методами последовательных приближений Пикара, Эйлера, Рунге-Кутта.
дипломная работа, добавлен 21.09.2016Сущность и структура дифференциальных уравнений, требования к ним и значение в математике. Обыкновенные уравнения первого и высшего порядка, их отличительные характеристики и свойства. Дифференциальные уравнения в частных производных: общее описание.
контрольная работа, добавлен 12.04.2014Формула интерполяционного многочлена Лагранжа и особенности ее использования. Вычисление интеграла по формуле левых и правых прямоугольников. Решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядков, используя возможности SCILAB.
контрольная работа, добавлен 25.05.2020Сведение краевой задачи к задаче Коши. Поиск параметрического семейства решений для системы уравнений. Понятие уравнения "сшивания". Метод стрельбы для нормальной системы обыкновенных дифференциальных уравнений. Геометрическая интерпретация метода.
курсовая работа, добавлен 22.04.2011Архимед и его формула для объёма шара. Теорема Ферма – Эйлера о представлении простых чисел в виде суммы двух квадратов. Философ и математик Лагранж и его теорема о четырех квадратах. Математическая деятельность Гаусса – открытие о семнадцатиугольнике.
книга, добавлен 13.01.2014Интерполирование как один из способов приближения функций. Интерполяционная формула Лагранжа. Формула Ньютона. Пример нахождения приближенного значения по интерполяционной формуле Лагранжа, Ньютона для значения заданного аргумента. Код программы Паскаль.
контрольная работа, добавлен 21.10.2017Краткая биография и научная деятельность А. Гротендика. Использование учёным принципа аналогии при разработке концепций и формулировке новых теорем. Анализ автором эмпирического материала и выявление скрытых связей между разными математическими идеями.
статья, добавлен 11.12.2024Численное решение системы дифференциальных уравнений. Решение задач интегрирования системы ОДУ методом Рунге-Кутты, условная минимизация функции нескольких переменных заданным методом с использованием программы Matlab сведением в графики и таблицы.
курсовая работа, добавлен 10.03.2020Ознакомление с примерами решений дифференциальных уравнений. Характеристика особенностей применения преобразований Лапласа. Исследование процесса записи решений дифференциальных уравнений при помощи свертки. Рассмотрение формулы Грина и Дюамеля.
презентация, добавлен 26.09.2017