Хроматические числа

Постановка и решение задачи в одномерном случае. Определение хроматического числа прямой и плоскости. Критическая конфигурация точек на плоскости. Построение раскрасок плоскости. Доказательство теорем Райского и Лармана-Роджерса. Изучение теории графов.

Подобные документы

  • Методика вычисления координат на линии и в плоскости. Основные принципы расчета площади геометрических фигур. Ознакомление с уравнениями прямой линии. Способы построения точек для эллипса, гиперболы и параболы. Математические действия над векторами.

    курс лекций, добавлен 22.11.2015

  • Обозначение множества точек на отрезке прямой плоскости. Характеристика коллинеарных векторов расположенных на одной либо на параллельных прямых. Анализ правил сложения на примере треугольника и параллелограмма. Обзор проекции произведения слагаемых.

    лекция, добавлен 29.09.2013

  • Изучение базовых понятий и определений; ознакомление с задачами, возникающими в теории графов и методами их решения. Освоение компьютерных способов представления графов и алгоритмов машинной обработки графов. Программные продукты для анализа графов.

    контрольная работа, добавлен 13.04.2012

  • Определение точки, симметричной данной относительно плоскости. Построение разверток поверхностей, многогранника, кривых и цилиндрических поверхностей. Построение точки пересечения линии и поверхности. Построение линии пересечения двух плоскостей.

    презентация, добавлен 09.03.2015

  • Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.

    курсовая работа, добавлен 06.07.2014

  • Деление отрезка пополам на две равные части перпендикуляром, проведенным через точки пересечения дуг окружностей радиуса. Построение перпендикуляра к прямой из точки, находящейся вне ее. Деление угла пополам. Построение правильных многоугольников.

    лекция, добавлен 25.09.2017

  • Квазискалярное произведение двух точек на проективной плоскости. Общий вид формулы Эйлера. Пример телепортации прямой из гиперболической геометрии в эллиптическую. Внутренняя и наружная область окружности на сфере. Части тора, особенности геометрии.

    статья, добавлен 03.05.2012

  • Проверка точек нахождения в одной плоскости тетраэдра через расчет его объёма, длину высоты, расстояние между скрещивающимися рёбрами. Решение системы линейных алгебраических уравнений. Составление уравнения гиперболы в канонической системе координат.

    задача, добавлен 20.01.2014

  • Разработка обучающего модуля по решению геометрических задач на построение. Примеры построения задач с помощью циркуля и линейки, схемы их решения. Определение свойства осевой симметрии плоскости. Метод осевой симметрии в решении задач на построение.

    реферат, добавлен 02.04.2014

  • Определение графов, их свойства и типы. Использование диаграмм для представления графов. Элементарные свойства остовных деревьев в связных графах. Топологическая теория графов. Введение в теорию матроидов, доказательство теорем о связности и укладках.

    учебное пособие, добавлен 15.10.2016

  • Классификация метрических задач на определение метрических характеристик геометрических объектов. Метрические свойства ортогонального проецирования. Теорема прямого угла. Перпендикуляр к плоскости. Определение углов между прямой и плоскостями проекций.

    методичка, добавлен 03.02.2015

  • Особенность применения конформных преобразований и интеграла типа Коши. Выполнение условий непрерывности тангенциальной составляющей вектора напряженности магнитного поля. Постановка и решение краевой задачи для комплексно-сопряженной магнитной индукции.

    статья, добавлен 06.11.2018

  • Алгебраические операции над комплексными числами и комплексное сопряжение. Показательная функция комплексного аргумента и применение формулы Эйлера. Геометрическая интерпретация комплексных чисел. Разложение многочлена с действительными коэффициентами.

    курс лекций, добавлен 23.10.2013

  • Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Определение точки равновесия (нулевого решения) однородной системы линейных уравнений. Расчет поведения фазовых кривых линейной автономной системы на плоскости.

    контрольная работа, добавлен 29.11.2015

  • Рассмотрение однородной краевой задачи Римана с краевым условием на действительной оси для функции, аналитической в комплексной плоскости кроме точек действительной оси. Вывод формулы, которая определяет аналитическую в верхней полуплоскости функцию.

    статья, добавлен 17.08.2020

  • Изучение основных матриц графов и их теорем. Описание порядка построения матрицы по графическому рисунку графа и графов по заданной матрице. Характеристика метрических характеристик графов, связанных с матрицами. Нахождение путей графов по матрице.

    курсовая работа, добавлен 13.09.2012

  • Определение положения квадратичной функции с помощью разных теорем. Формулирование и доказательство прямой и обратной теорем Виета. Рассмотрение применения данных теорем к задачам с параметрами, сводящихся к исследованию корней квадратного трехчлена.

    курсовая работа, добавлен 25.05.2018

  • Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве. Понятие плоскости и пространства геометрии. Общепринятые изображения плоскости. Аксиомы стереометрии, их сущность и содержание. Следствия из аксиом стереометрии.

    презентация, добавлен 13.04.2012

  • Базис в трёхмерном пространстве как любая упорядоченная тройка линейно независимых векторов. Методика определения коэффициентов разложения векторов на плоскости. Анализ условий, при выполнении которых ортогональный базис называется ортонормированным.

    контрольная работа, добавлен 29.02.2020

  • Изучение определения числа у Г. Фреге. Сравнительный анализ подхода Г. Фреге со взглядами И. Канта, оригинальность и приоритет фрегевского подхода. Недостатки определения числа у Г. Фреге, выявленные Б. Расселом. Критическая оценка исследований Рассела.

    статья, добавлен 24.11.2018

  • Характеристика общего уравнения прямой. Описание векторного, канонического и параметрического уравнения прямой. Вычисление угла между двумя прямыми. Условие параллельности и перпендикулярности двух прямых. Уравнения прямой, проходящей через две точки.

    лекция, добавлен 09.07.2015

  • Описание методов проекций (центральные и параллельные проекции). Проецирование методом Монжа. Взаимное положение прямых в пространстве: пересекающиеся, параллельные и скрещенные прямые. Способы задания плоскости на чертеже. Прямая и точка в плоскости.

    курсовая работа, добавлен 15.12.2010

  • Конус - геометрическое тело, состоящее из круга (основания), точки, не лежащей в плоскости этого круга (вершины) и всех отрезков, соединяющих вершину с точками основания. Определение площади поверхности конуса и его объема. Понятие касательной плоскости.

    презентация, добавлен 25.04.2012

  • Исследование кривой второго порядка, принципы и правила ее построения по каноническому уравнению. Преобразование координат на плоскости. Преобразование координат на плоскости. Приведение к каноническому виду общего уравнения кривой 2-ого порядка.

    контрольная работа, добавлен 06.06.2014

  • Изображение фигуры на плоскости как графический способ представления информации. Многообразие геометрических объектов пространства, отношения между ними и их графическое отображение на плоскости. Основы визуализации информации геометрических объектов.

    курс лекций, добавлен 21.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.