Интерполирование алгебраическими многочленами
Интерполирование как один из способов приближения функций. Интерполяционная формула Лагранжа. Формула Ньютона. Пример нахождения приближенного значения по интерполяционной формуле Лагранжа, Ньютона для значения заданного аргумента. Код программы Паскаль.
Подобные документы
Характеристика процесса интерполирования посредством сплайнов, применяемых в сфере вычислительной математики, с целью нахождения промежуточных значений величины. Обоснование функций и исследование уравнений частичного отрезка кубических сплайнов.
презентация, добавлен 30.10.2013Способы оценки погрешности численного решения нелинейных уравнений. Рекуррентная формула, которая используется для получения решения уравнения методом Ньютона. Алгоритм нахождения точки экстремума с использованием методики одномерной оптимизации.
курсовая работа, добавлен 16.06.2021Определение несобственного интеграла по неограниченному промежутку. Формула Ньютона-Лейбница для интегралов первого рода. Признаки сравнения Абеляра и Дирихле для функций. Особенность на левом конце промежутка интегрирования. Простейшие теоремы.
курсовая работа, добавлен 09.10.2014- 54. Бином Ньютона
Цель изучения бинома Ньютона – упрощение вычислительных действий. Биномиальные коэффициенты и их получение с помощью треугольника Паскаля (пользуясь операцией сложения). Сумма показателей степеней a и b каждого члена разложения. Бином в общем виде.
презентация, добавлен 11.05.2016 Рассмотрение теории функций комплексной переменной. Формулировка необходимого условия дифференцируемости функции комплексного переменного по условию Коши-Римана. Теорема Коши для многосвязной области. Формула среднего значения. Ряды, их виды.
шпаргалка, добавлен 02.03.2014Понятие условного экстремума. Использование методов неопределенных множителей Лагранжа, исключения части переменных и штрафных санкций для исследования функции на условный экстремум. Алгоритм нахождения экстремума функции методом множителей Лагранжа.
курсовая работа, добавлен 29.05.2015Интерполяционная задача Эрмита о построении многочлена, принимающего заданные значения функции и ее производных в узловых точках. Упрощение вывода формулы интерполяционного многочлена Эрмита. Интерпретация многочлена в представлениях многочлена Тейлора.
статья, добавлен 12.05.2018Формула нахождения очень больших простых чисел. Алгоритмы разложение больших чисел на простые множители. Вычисление ряда чисел Фибоначчи. Числовой код треугольника Паскаля. Простые числа как основа защиты электронной коммерции и электронной почты.
статья, добавлен 03.03.2018Область сходимости ряда. Производные функции четного и нечетного порядка. Подставление найденных величины в ряд Маклорена. Интервал сходимости ряда. Формула бинома Ньютона. Бесконечное разложение и конечная сумма. Определение биномиального ряда.
презентация, добавлен 18.09.2013Нахождение определенных интегралов от функций, первообразные которых не выражаются через элементарные функции. Вывод приближенных формул вычисления определенных интегралов. Формула трапеций и формула парабол (Симпсона), абсолютная величина ее погрешности.
реферат, добавлен 08.03.2010Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.
шпаргалка, добавлен 02.02.2016Первые оптические эксперименты, одного из создателей классической физики, Исаака Ньютона. Открытие им закона всемирного тяготения. Математические работы. Совместные наработки и спор с Лейбницем. Математические начала натуральной философии Ньютона.
реферат, добавлен 20.05.2013- 63. Теорема Нётер
Доказательство теоремы Нетер, поиск аддитивных или асимптотически аддитивных интегралов движения в виде явных функций координат и скоростей при заданном виде функции Лагранжа без интеграции уравнений. Форма уравнений Лагранжа-Эйлера и ее инвариантность.
курсовая работа, добавлен 10.11.2010 Определение и сущность производной и ее геометрический смысл. Содержание теоремы о достаточном условии экстремума. Признаки монотонности функций. Определение первообразной, формула Ньютона – Лейбница и геометрический смысл определенного интеграла.
доклад, добавлен 23.04.2013Основные свойства операции дифференцирования. Производные и дифференциалы высших порядков. Понятия интерполяции и аппроксимации. Интерполяционные формулы Ньютона при равноотстоящих узлах. Использование квадратурных формул для численного интегрирования.
статья, добавлен 09.05.2021- 66. Число "е"
Анализ последовательности числа с общим членом, согласно формуле суммы бесконечно убывающей геометрической последовательности. Понятие функций одной переменной некоторых числовых множеств. Виды элементарных функций и их геометрическое содержание.
лекция, добавлен 29.09.2013 Вычисление значения функции в точке. Характеристика интегральной суммы функции на отрезке. Определение нижнего и верхнего предела интегрирования. Рассмотрение методов применения формулы Ньютона-Лейбница. Установление основных способов замены переменной.
задача, добавлен 17.02.2016Основные аппроксиманты, которые используются при решении задач приближенного представления функций. Анализ особенностей применения интерполяционных сплайнов при численном дифференцировании. Формула численного интегрирования для кубического сплайна.
статья, добавлен 27.06.2016Суть аппроксимации таблично заданной функции по МНК (методу наименьших квадратов), ее отличие от метода интерполирования. Задача построения аппроксимирующих функций в виде элементарных функций (степенной, показательной, логарифмической, гиперболической).
контрольная работа, добавлен 25.04.2015Побудова апарату некласичних мінорант Ньютона функцій однієї дійсної змінної, заданих таблично. Використання цього апарату для оцінки точності наближення функцій некласичними мінорантами Ньютона. Основні властивості міноранти Ньютона та її діаграми.
статья, добавлен 30.01.2017- 71. Метод Ньютона
Знаходження кореня рівняння заданої неперервної функції на певному відрізку. Умови ітераційних обчислень у методі Ньютона. Критерії умов завершення розрахунку для алгоритму. Недоліки методу Ньютона. Обчислення квадратного кореня за його вказаного методу.
практическая работа, добавлен 09.08.2022 Сущность и основные теоремы дифференциального исчисления, их главные отличия. Процесс построения графика. Описание теоремы Вейерштрасса и Лагранжа, их использование. Обобщенная формула конечных приращений. Раскрытие неопределенностей и правила Лопиталя.
лекция, добавлен 29.09.2013Понятие первообразной функции и неопределенного интеграла. Правила интегрирования. Площадь криволинейной трапеции. Формула Ньютона-Лейбница и первообразная функция. Вычисление площади области. Формулы вычисления. Площадь фигуры, ограниченная параболой.
лекция, добавлен 26.07.2015Классификация задач нелинейного программирования и методы их решения. Графический метод решения задач нелинейного программирования для функций двух переменных. Решение задач нелинейного программирования методом Лагранжа и в программной среде Mathcad.
курсовая работа, добавлен 13.10.2016Формула ускорения точки в декартовой системе координат. Материальная точка как простейшая механическая система, обладающая минимально возможным числом степеней свободы при данной размерности пространства, исследование ее свойств в математической сфере.
реферат, добавлен 23.09.2013