Планирование экспериментов с получением линейных моделей. Проверка адекватности уравнения регрессии спланированного эксперимента

Особенности статистических методов планирования эксперимента с получением линейных моделей. Свойства полного факторного эксперимента типа 2k. Порядок заполнения и приемы построения матрицы планирования эксперимента. Расчет коэффициентов регрессии.

Подобные документы

  • Построение линейного уравнения парной регрессии y от x. Причины существования случайной ошибки. Определение среднеквадратического отклонения; коэффициентов корреляции, эластичности, детерминации. Оценка статистической значимости парной линейной регрессии.

    контрольная работа, добавлен 14.04.2021

  • Составление уравнения регрессии с применением метода наименьших квадратов. Оценка достоверности полученного уравнения с использованием корреляционного анализа. Расчет среднеквадратичного отклонения, коэффициентов парной детерминации и корреляции.

    задача, добавлен 19.04.2017

  • Основы использования законов распределения случайных величин. Характеристика метода Монте-Карло. Обобщенное распределение Эрланга. Планирование имитационного компьютерного эксперимента. Исследование аспектов ортогонального планирования второго порядка.

    курсовая работа, добавлен 25.03.2015

  • Основные задачи регрессионного анализа. Использование обобщенного метода наименьших квадратов. Характеристика оценки коэффициентов автокорреляции, дисперсии и ковариации. Особенность тенденции роста рассеяния случайных отклонений и построения матрицы.

    презентация, добавлен 18.01.2015

  • Определение среднего коэффициента эластичности и сравнительная оценка силы связи фактора с результатом. Расчет параметров линейного уравнения множественной регрессии, дисперсии и среднеквадратического отклонения. Разработка матрицы парных коэффициентов.

    задача, добавлен 13.03.2014

  • Построение уравнения парной регрессии. Расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Оценка статической значимости параметров регрессии и корреляции. Прогноз зарплаты в зависимости от значения прожиточного минимума.

    задача, добавлен 27.09.2016

  • Построение линейных оптимизационных моделей. Графические методы поиска оптимального решения линейных моделей. Решение прямой задачи линейного программирования симплексным методом, построение опорных планов транспортных задач, и их оптимизация.

    практическая работа, добавлен 30.06.2013

  • Недостатки использования моделей множественной линейной регрессии, статистических и стохастических моделей в описании экономических процессов. Необходимость новых методов математического моделирования на базе теории нечетких множеств и нейронных сетей.

    статья, добавлен 24.07.2013

  • Основные этапы построения эконометрической модели. Оценка параметров линейной парной регрессии и нелинейных моделей. Отбор факторов при построении множественной регрессии. Моделирование одномерных временных рядов и прогнозирование. Модели авторегрессии.

    курс лекций, добавлен 16.05.2016

  • Проверка статистической гипотезы значимости коэффициента функции регрессии. Построение квадратичной модели функции регрессии. Интерполирование функций, процедура линеаризации в решении нелинейной задачи регрессии. Построение полулогарифмической функции.

    курсовая работа, добавлен 19.03.2015

  • Эконометрическое моделирование - важная составляющая математического описания развития любой сферы хозяйственной деятельности. Методы построения интервальных оценок для коэффициентов регрессии. Порядок определения среднего коэффициента эластичности.

    курсовая работа, добавлен 07.12.2019

  • Главная особенность изложения принципов отработки математических моделей сложных технических систем. Характеристика рассмотрения основных вопросов калибровки моделей при ограниченном числе испытаний для детерминированного и стохастического случаев.

    статья, добавлен 27.11.2018

  • Парная регрессия и корреляция. Построение уравнения регрессии. Оценка параметров модели, тесноты связи. Расчет доверительных интервалов. Точечный и интервальный прогноз по уравнению линейной регрессии. Основные цели множественной регрессии и корреляции.

    методичка, добавлен 16.05.2016

  • Расчет матрицы парных коэффициентов корреляции. Оценка параметров линейной и парной модели с полным перечнем факторов, влияние факторных переменных на Y по коэффициентам регрессии. Тестирование предпосылок теоремы Гаусса-Маркова для двух моделей.

    контрольная работа, добавлен 18.04.2018

  • Составление уравнения линейной регрессии с использованием матричного метода. Нахождение параметров нормального распределения для статистик и числовых значений переменных. Расчет коэффициента детерминации и оценка качества выбранного уравнения регрессии.

    контрольная работа, добавлен 10.07.2016

  • Рассмотрение основных аспектов модели множественной регрессии. Проверка наличия мультиколинеарности факторов. Оценка статистической надежности уравнения регрессии с помощью F–критерия Фишера. Особенности расчета минимальных среднегодовых издержек.

    контрольная работа, добавлен 08.03.2015

  • Построение уравнения регрессии с помощью метода наименьших квадратов. Матричный подход в регрессионном анализе. Оценка вариации уравнения регрессии и проверка гипотез о наклоне и коэффициенте корреляции. Оценка математического ожидания значений отклика.

    учебное пособие, добавлен 22.11.2012

  • Расчет матрицы парных коэффициентов корреляции, параметров линейной парной регрессии и их статистическая значимость. Определение фактических и модельных значений, точек прогноза. Построение модели формирования цены квартиры за счёт значимых факторов.

    контрольная работа, добавлен 10.06.2015

  • Определение факторных и результативных признаков. Изучение взаимосвязи энерговооруженности и выпуска готовой продукции. Обзор уравнения регрессии и вычисление коэффициента регрессии. Определение формы связи и измерение тесноты связи, оценка адекватности.

    контрольная работа, добавлен 06.02.2018

  • Основные типы эконометрических моделей и исходные данные для их построения. Оценка статистической значимости параметров линейной модели множественной и парной регрессии. Применение эконометрических моделей для прогнозирования, примеры их построения.

    учебное пособие, добавлен 07.05.2015

  • Уравнение линейной парной регрессии. Качественная оценка тесноты связи величин на основе шкалы Чеддока. Алгоритм оценки статистической значимости уравнения регрессии в целом. Методика расчета гиперболической, полулогарифмической и степенной моделей.

    контрольная работа, добавлен 17.04.2014

  • Описание метода построения математической модели обобщенного синхронного генератора с независимыми фазами. Расчет коэффициентов уравнений регрессии методом экстремально-корреляционного смещения коэффициентов. Проверка модели на физическую адекватность.

    статья, добавлен 18.12.2017

  • Формулировка вида модели простой (парной) регрессии, исходя из соответствующей теории связи между переменными. Определение величины случайных ошибок. Применение фиктивных переменных для функции спроса. Построение системы линейных одновременных уравнений.

    контрольная работа, добавлен 29.04.2013

  • Оценка качества подгонки (значимости) линии регрессии к имеющимся данным. Средняя ошибка аппроксимации, анализ дисперсии, разложение отклонения от среднего. Свойства коэффициента детерминации, число степеней свободы. Дисперсионный анализ результатов.

    презентация, добавлен 12.07.2015

  • Пример построения однофакторных и многофакторных моделей. Анализ значимости коэффициентов регрессии с использованием критериев Стьюдента и модели с применением критерия Фишера. Расчет ошибки аппроксимации и прогнозы социально-экономических показателей.

    курсовая работа, добавлен 16.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.