Дифференциальные уравнения в биологии, химии, медицине

Описание биологических обществ с помощью дифференциальных уравнений. Химическая кинетика и выражение химических реакций с помощью так называемых стехиометрических уравнений. Дифференциальные уравнения в медицине на примере математической модели эпидемии.

Подобные документы

  • Рассмотрение общей схемы исследования нелинейных дифференциальных и интегро–дифференциальных уравнений в частных производных высокого порядка. Характеристика основ применяемого метода дополнительного аргумента. Сведение к решению интегрального уравнения.

    реферат, добавлен 18.05.2016

  • Решение уравнений в школьной программе. Потребность в комплексных числах. Извлечение корней, понятие квадратных уравнений. Преобразование кубичных уравнений. Решение уравнений в радикалах и существование корней уравнений. Приближённое решение уравнений.

    презентация, добавлен 06.12.2011

  • Использование матричных уравнений в теории устойчивости движения, при решении дифференциальных уравнений Риккати и матриц Сильвестра. Формула неоднородного уравнения. Существенное отличие частного решения от конструкции в виде псевдообратного оператора.

    статья, добавлен 30.10.2016

  • Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.

    учебное пособие, добавлен 16.05.2010

  • История развития знаний и известные способы решения квадратных уравнений. Зависимость корней от знака дискриминанта. Решение квадратных уравнений с помощью циркуля, линейки. Свойства коэффициентов квадратного уравнения, теорема Виета и задача Диофанта.

    презентация, добавлен 13.01.2017

  • Изучение эволюции уравнений и их решений. Теории вычислений Древнего Египта, способы решения квадратных уравнений в Древнем Вавилоне и арабских странах. Кубические уравнения Греции, формула Тартальи–Кардано. Методы решения уравнений высоких степеней.

    курсовая работа, добавлен 22.05.2010

  • Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.

    курсовая работа, добавлен 19.01.2016

  • Сущность обыкновенных дифференциальных уравнений, описание их общего вида и основные правила решения. Понятие условия Коши, его применение. Роль дифференциальных уравнений в решении прикладных задач. Порядок нахождения уравнения кривой, основные методы.

    курсовая работа, добавлен 25.11.2013

  • Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.

    курсовая работа, добавлен 08.06.2013

  • Описание связи между неизвестной функцией и ее производными дифференциальным уравнением. Решение уравнения Клеро в параметрическом виде. Определение огибающей семейства прямых. Общее решение уравнения Лагранжа. Дифференцирование равенства по переменной x.

    реферат, добавлен 21.05.2021

  • Определение позиционных звеньев и запись уравнений для них. Вид передаточной функции, дифференциальные и характеристические уравнения для идеального усилительного (безинерционного), устойчивых и неустойчивых апериодических и колебательных звеньев.

    контрольная работа, добавлен 28.09.2010

  • Понятие и геометрический смысл модуля. Изучение основных видов уравнений и способов их решений. Способы решения простейших уравнений с модулями. Применение метода интервалов для решения всех типов уравнений с модулями. Уравнения со "сложным" модулем.

    методичка, добавлен 03.03.2012

  • Исследование поведения различных систем в виде технических, экономических, экологических факторов, которые приводят к анализу уравнений, включающих параметры системы, и скорость их изменения, аналитическим выражением которых являются производные.

    контрольная работа, добавлен 26.02.2010

  • Новые признаки разрешимости квазилинейных краевых задач для абстрактных функционально-дифференциальных уравнений с необратимой линейной частью и систем квазилинейных операторных уравнений. Разрешимость задач для уравнения с отклоняющимся аргументом.

    автореферат, добавлен 17.12.2017

  • Обыкновенные дифференциальные уравнения, их характеристика и свойства. Типы уравнений с разделяющимися переменными, их структура и требования к решению. Достаточные признаки разложимости в ряд Фурье, порядок определения интегралов. Теорема Ляпунова.

    курс лекций, добавлен 05.03.2016

  • Особенности и специфика дифференциального уравнения. Теорема о нормальной форме уравнения, не разрешенного относительно производной в окрестности регулярной особой точки. Построение криминанты уравнения, точки касания криминанты с контактной плоскостью.

    курсовая работа, добавлен 08.01.2018

  • Частные случаи уравнений плоскости. Сущность параметрического и канонического уравнения, взаимное расположение прямых. Нормальное уравнение плоскости, специальные виды уравнений. Решение уравнений с направляющим вектором. Пример общего уравнения прямой.

    презентация, добавлен 21.09.2017

  • Изучение понятия дифференциального уравнения, связывающего независимую переменную, искомую функцию и её производные различных порядков. Общее и частное решение линейного и однородного дифференциального уравнения. Исследование метода вариации постоянной.

    презентация, добавлен 03.05.2012

  • Дифференциальные уравнения в частных производных. Задача Пуанкаре, правила ее решения. Приведение к каноническому виду дифференциального уравнения второго порядка от двух независимых переменных. Краевые задачи для математического равенства Лапласа.

    шпаргалка, добавлен 04.04.2015

  • Решение краевых задач уравнений математической физики и задачи о разыскивании собственных значений и собственных функций для обыкновенных дифференциальных уравнений. Задача Штурма-Лиувилля о нахождении отличных от нуля решений дифференциальных уравнений.

    курсовая работа, добавлен 26.02.2020

  • Дифференциальные уравнения первого порядка. Метод изоклин как метод приближенного решения задачи Коши. Использование метода изоклин как инструмента исследования поведения решений. Изображение областей характерного поведения интегральных кривых.

    статья, добавлен 13.02.2017

  • Решение дифференциального уравнения. Изучение поведения интегральных кривых уравнения в случае, когда функция имеет точку бесконечного разрыва. Существование и единственность решения. Теорема Коши-Липшица. Понятие первого интеграла нормальной системы.

    учебное пособие, добавлен 02.05.2014

  • Решение системы линейных уравнений с двумя неизвестными методом Крамера. Элементы аналитической геометрии. Пределы функции в точке и на бесконечности. Общая схема исследования функций и построения графиков. Дифференциальные уравнения первого порядка.

    курс лекций, добавлен 30.04.2012

  • Совершенствование методики изучения уравнений как моделей реальных процессов. Теоретические основы математического моделирования, его виды и классификация. Уравнения как математические модели реальных ситуаций. Анализ учебников алгебры 5-9 классов.

    дипломная работа, добавлен 05.07.2014

  • Понятие функционального уравнения. Изучение простейших функциональных уравнений. Решение функциональных уравнений методом подстановки и методом Коши. Использование значений функции в некоторых точках. Графическое решение функциональных уравнений.

    курсовая работа, добавлен 04.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.