Эквивалентные бесконечно малые
Сравнение бесконечно малых функций, их определение. Некоторые эквивалентные бесконечно малые функции при x>0. Раскрытие неопределенностей. Свойства функций, непрерывных на отрезке. Основные соотношения, их доказательство и примеры решений задач.
Подобные документы
Определение пределов последовательности и функции. Точки непрерывности и точки разрыва функции, производные и их приложения. Анализ примеров нахождения производных. Наибольшее и наименьшее значение функции на отрезке, ее исследование на экстремум.
контрольная работа, добавлен 23.01.2015Достижения Ньютона в математике: нахождение путем общего разложения бинома с произвольным показателем степени, разработка метода флюксий для анализа бесконечно малых величин. Изложение в журнале "Труды ученых" Лейбницем основ дифференциального исчисления.
реферат, добавлен 30.06.2011Изучение четности и нечетности функции. Анализ нахождения наименьшего положительного периода функций. Определение промежутков знакопостоянства. Возрастание и убывание функций. Нахождение точек экстремума. Характеристика алгоритма исследования функции.
презентация, добавлен 22.03.2021История формирования и понятие математических софизмов и их виды: алгебраический, геометрический, арифметический и логический. Классификация парадоксов и их причины (теория Банаха-Тарского, задача о треугольнике, анализ бесконечно малых величин).
реферат, добавлен 16.04.2015Возникновение дифференциальной геометрии. Доказательство теорем о пределах. Исследование функции на экстремумы, свойства непрерывных функций и производные. Теоремы о дифференцируемых функциях. Биографии ученых, внёсших вклад в развитие дифференциалов.
курсовая работа, добавлен 11.02.2010Описание бесконечно ориентированного графа. Решение задач о количестве путей на граф-решетке. Решение задач о случайных блужданиях по вершинам графа, без ограничений на достижимость, а также со смешанным и магнитным ограничениями на достижимость.
статья, добавлен 27.07.2017Основные свойства множеств с самоприрадлежностью. Бесконечно малая величина в математике. Множество, содержащее все множества, задаваемое непредикативной схемой свёртывания. Использование бесконечных, недостижимых последователей в математических теориях.
статья, добавлен 26.04.2019Появление математики как систематической науки и влияние на философское мышление. Философские предпосылки обоснования исчисления бесконечно малых в эпоху Возрождения. Неевклидовы геометрии и развитие философии математики в XIX веке. Математика в XX веке.
реферат, добавлен 11.09.2010Отличие приращения функции от дифференциала на бесконечно малую величину. Изучение формулы, которая может использоваться для приближенных вычислений. Нахождение производной функции дифференциала. Исследование примеров вычисления корней n-ой степени.
презентация, добавлен 21.09.2013Частичные полукольца непрерывных функций на топологических пространствах X со значениями в полукольце [0, ∞] рассматриваемом с обычной топологией. Максимальные идеалы и основополагающие свойства простых идеалов. Применение соответствий полуколец.
статья, добавлен 26.04.2019Непрерывность функции в точке. Основные характеристики функций, непрерывных в точке. Понятие непрерывности функции на отрезке. Точки разрыва функции и их классификация. Точка разрыва первого рода, точка устранимого разрыва и точка разрыва второго рода.
реферат, добавлен 03.08.2010Греческая философия и математика. Возрождение. Философские предпосылки обоснования исчисления бесконечно малых. Неевклидовы геометрии и развитие философии математики в XIX в. Философия в сфере математики, способствующая выработке математического знания.
реферат, добавлен 08.09.2010Понятие случайной величины в статистическом анализе, дискретные и непрерывные случайные величины. Свойства дифференциальной функции распределения вероятностей. Статистические функции непрерывных распределений. Изучение в Microsoft Excel данных функций.
курсовая работа, добавлен 06.10.2011Возникновение в России систематической научной работы неразрывно связано с учреждением Академии Наук. Леонард Эйлер и его трактаты: "Введение в анализ бесконечно малых", "Основания дифференциального исчисления" и "Основания интегрального исчисления".
реферат, добавлен 05.03.2009Локальный экстремум функции. Отыскание наибольшего и наименьшего значения непрерывной функции на отрезке. Расчет интервалов выпуклости графика кривой и точек перегиба функции. Определение интервалов возрастания и убывания функций с помощью производных.
лекция, добавлен 07.07.2015Определение квадратной матрицы, на главной диагонали которой стоят единицы. Построение матрицы В, элементы которой получены путем умножения каждого элемента матрицы А на это число. Определение бесконечно большой величины. Правила дифференцирования.
контрольная работа, добавлен 08.10.2014Пьер де Ферма - французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел, оптики, исчислении бесконечно малых величин. Краткая биография математика. Формулировка Великой теоремы Ферма.
презентация, добавлен 01.04.2012Понятие и порядок определения точки сгущения множества. Исследование непрерывных функций. Частная производная функции. Дифференцируема в точке функция и основные требования к ней. Определение касательного вектора и плоскости к поверхности. Матрица Якоби.
шпаргалка, добавлен 11.04.2012Основная характеристика предельного значения функции. Главный анализ строения базы окрестностей бесконечно удаленной точки. Проведение исследования понятия предела числовой последовательности. Особенность разложения числителя и знаменателя на множители.
доклад, добавлен 07.10.2016Основные понятия, определения и теоремы асимптотической последовательности и асимптотического ряда. Примеры гамма-функций, интегральных дзета-функций Римана и функций ошибок. Общие свойства обобщённого разложения с обычным асимптотическим разложением.
практическая работа, добавлен 07.09.2016Свойства и методы вычисления пределов функций одной переменной. Исследование свойств функций, непрерывных в точке и на интервале, их корни и промежуточные значения, точки разрывов и их классификация. Использование метода сечений при построении графика.
эссе, добавлен 28.07.2013История зарождения и развития понятия о степенной функции. Основные свойства и особенности построения графиков степенных функций. Решение задач на построение графиков заданных функций. Исследование степенной функции на монотонность и ограниченность.
контрольная работа, добавлен 20.01.2018Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.
лекция, добавлен 05.03.2009История открытия общего метода для построения касательной в любой точке кривой. Анализ первой печатной работы Г. Лейбница по дифференциальному исчислению. Дифференциал как бесконечно малое приращение. Определение понятия правой и левой производных.
презентация, добавлен 25.11.2015Определение наибольшего и наименьшего значений функции на заданном интервале. Построение касательной графика, параллельной к координатной оси. Формула Коши или обобщенная формула конечных приращений. Функция Лагранжа в раскрытие неопределенностей.
лекция, добавлен 26.01.2014