Решение нелинейных и трансцендентных уравнений

Аналитический и графический способ изолирования корня, нахождение диапазона, методы по уточнению корней различных нелинейных и трансцендентных уравнений. Комбинированный метод хорд и касательных, модифицированный метод Ньютона. Уравнение третьей степени.

Подобные документы

  • Теоретические аспекты понятия о комплексных числах, число действительных корней и основные правила их извлечения. Методы решения различных видов уравнений с несколькими переменными в радикалах и приближенное решение уравнений в элементарной алгебре.

    презентация, добавлен 11.03.2012

  • Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.

    курсовая работа, добавлен 11.06.2014

  • Связь с построениями циркулем и линейкой. Решение уравнений 3-й и 4-й степени. Доказательство построимости в теореме Гаусса. Задачи и доказательства неразрешимости в радикалах, извлечение корней. Теорема Галуа о существовании уравнения 5-й степени.

    учебное пособие, добавлен 10.09.2016

  • Раскрытие неопределенности с помощью правила Лопиталя. Поиск производной от функции. Решение системы линейных уравнений методами Гаусса и Крамера. Расширенная матрица системы, уравнение прямой. Решение игры аналитическим и геометрическим способами.

    контрольная работа, добавлен 03.07.2012

  • Численные методы интегрирования дифференциальных уравнений. Метод Эйлера как наиболее простой численный метод решения систем обыкновенных дифференциальных уравнений, основанный на аппроксимации интегральной кривой кусочно-линейной функции Эйлера.

    доклад, добавлен 09.10.2012

  • Фундаментальная система решений и общее решение однородной системы уравнения. Система n линейных уравнений с n неизвестными. Правило Крамера. Однородная система n линейных уравнений, с n неизвестными. Метод Гаусса. Матричный вид системы уравнений.

    контрольная работа, добавлен 06.08.2013

  • Краткая характеристика, алгоритм, описание программы решения и результаты работы численных методов для задачи решения нелинейных уравнений: золотого сечения, дихотомии, простых итераций. Сравнение и анализ, преимущества и недостатки работы методов.

    контрольная работа, добавлен 09.01.2011

  • Нахождение определителя матрицы. Решение систем матричным способом. Решение алгебраических дополнений. Решение системы уравнений методом Гаусса. Исследование совместности систем по теореме Кронекера-Капелли, определение их ранга, нахождение решения.

    контрольная работа, добавлен 20.12.2016

  • Метод Рунге-Кутты для решения как одиночных дифференциальных уравнений первого порядка, так и систем уравнений первого порядка. Исследование метода Рунге-Кутты четвертого порядка для решения дифференциальных уравнений. Программа для решения уравнения.

    контрольная работа, добавлен 29.03.2012

  • Решение систем линейных алгебраических уравнений методом Гаусса. Схема единственного деления. Необходимость выбора главного элемента по столбцу. Исключение неизвестного из уравнений на этапе обратного хода. Коэффициенты системы уравнений по Гауссу.

    доклад, добавлен 18.09.2013

  • Сведение краевой задачи к задаче Коши. Поиск параметрического семейства решений для системы уравнений. Понятие уравнения "сшивания". Метод стрельбы для нормальной системы обыкновенных дифференциальных уравнений. Геометрическая интерпретация метода.

    курсовая работа, добавлен 22.04.2011

  • Решение матричных уравнений по формулам Крамера, методом Гаусса, с помощью обратной матрицы. Нахождение производных функций уравнений. Исследование функции и построение графиков. Вычисление интегралов, применение метода интегрирования функции по частям.

    контрольная работа, добавлен 23.04.2022

  • Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.

    курс лекций, добавлен 24.04.2009

  • Способы оценки погрешности численного решения нелинейных уравнений. Рекуррентная формула, которая используется для получения решения уравнения методом Ньютона. Алгоритм нахождения точки экстремума с использованием методики одномерной оптимизации.

    курсовая работа, добавлен 16.06.2021

  • История формирования и развития квадратных уравнений: направления и этапы их исследования в Древнем Вавилоне, Индии, Европе XIII–XVII вв. Схема нахождения корня. Способы решения данного типа уравнений: Разложение на множители, выделение полного квадрата.

    методичка, добавлен 18.12.2012

  • Методика составления и решения системы линейных алгебраических уравнений, их графическое изображение. Теорема Кронекера-Канелли о признаках совместимости системы и ее доказательство. Метод Крамера и матричный метод решения неоднородной системы уравнений.

    контрольная работа, добавлен 26.07.2009

  • Описание численных методов решения алгебраических и дифференциальных уравнений. Использование языка программирования Visual Basic для реализации алгоритмов. Определение корней уравнения методом хорд и касательных. Аппроксимация и интерполяция функций.

    учебное пособие, добавлен 22.05.2014

  • Рассмотрение системы уравнений как условия, состоящего в одновременном выполнении нескольких уравнений относительно нескольких переменных. Установление обусловленности матрицы. Изучение методов интегрирования Ньютона-Котеса. Обзор метода прямоугольников.

    доклад, добавлен 24.01.2016

  • Нахождение обратной матрицы. Исследование системы линейных алгебраических уравнений на совместность. Нахождение координат вектора в заданном базисе. Метод элементарных преобразований и окаймляющих миноров. Способы нахождения ранга расширенной матрицы.

    контрольная работа, добавлен 17.04.2017

  • Методы поиска решений нелинейных уравнений, сущность метода Ньютона. Интерполяция функции с помощью полинома Лагранжа. Вычисление интеграла по формуле трапеций с тремя десятичными знаками, расчет интеграла по формуле Симпсона. Оптимизация функции.

    контрольная работа, добавлен 13.10.2014

  • Решение простейших дифференциальных уравнений первого порядка. Уравнения в полных дифференциалах, интегрирующий множитель. Нахождение интегрируемых комбинаций. Симметрическая форма системы дифференциальных уравнений. Приближенные методы интегрирования.

    курсовая работа, добавлен 23.10.2017

  • Точные методы решения систем линейных алгебраических уравнений. Классификация погрешностей, возникающих при решении системы линейных алгебраических уравнений. Метод А.М. Данилевского нахождения канонической формы Фробениуса. Итерационный метод вращений.

    курсовая работа, добавлен 11.03.2014

  • Разработка математических моделей эксплуатационной и интерференционной конкуренций на линейном ареале на базе систем уравнений с распределенными параметрами. Построение численного решения краевой задачи для системы нелинейных дифференциальных уравнений.

    статья, добавлен 07.08.2020

  • Понятие целых и дробных уравнений. Определение многочлена стандартного вида. Понятие уравнения с одной переменной. Основные методы решения целых уравнений. Понятие и определение степени уравнения. Определение корня линейного и квадратного уравнения.

    презентация, добавлен 14.01.2015

  • Приближенные методы решения систем линейных уравнений. Эффективность применения приближенных методов. Метод итераций в системе с n линейных уравнений с n неизвестными. Решение СЛАУ высокого порядка методом Ланцоша. Проблема выбора начального приближения.

    реферат, добавлен 16.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.