Актуальные проблемы современной алгебры

Анализ фундаментальных проблем в направлениях современной алгебры: теория неассоциативных алгебр, теория конечных групп и алгебраическая геометрия. Построение примеров йордановых супералгебр над произвольным полем. Арифметическое описание спектров.

Подобные документы

  • Простейшие свойства формаций, их основные обозначения и теоремы. Проекторы конечных групп. Формации Гашюца. Характеристика основных позиций теории формации и приведение конкретных примеров. Строение формаций порожденных группами и сущность корадиалов.

    дипломная работа, добавлен 19.04.2011

  • Определение выхода при помощи текущего состояния входов как отличительная особенность комбинационных цифровых схем. Характеристика основных аксиом булевой алгебры. Исследование ключевых правил перемещения инверсии. Методика построения карты Карно.

    презентация, добавлен 13.10.2016

  • Исследование вопросов линейной алгебры и физики для активного и неформального усвоения: основные понятия и теоремы, формулы, решение практических задач, упражнения для самостоятельной работы, для решения на практических занятиях и для домашних заданий.

    краткое изложение, добавлен 25.03.2011

  • Изучение основных понятий векторной алгебры. Определение базиса вектора, коллинеарных и компланарных векторов. Изучение проекции на ось и ее свойств. Рассмотрение сложения векторов: правил треугольника и параллелограмма. Формулирование теоремы Фалеса.

    лекция, добавлен 26.01.2014

  • Алгебра матриц, линейные и матричные уравнения. Матрицы в экономических приложениях. Свободные векторы, система координат. Линейные операторы, квадратичные формы и классификация кривых второго порядка. Расположение прямых на плоскости и в пространстве.

    учебное пособие, добавлен 06.02.2011

  • Системы знаков и их роль в математике. Оперирование математическими знаками. Введение нуля и развитие позиционной десятичной системы счисления. Символика Виета и Декарта и развитие алгебры. Развитие алгебры в Европе. Обозначение производной и интеграла.

    курсовая работа, добавлен 01.03.2011

  • Элементы комбинаторики, перестановки, размещения, сочетания. Формульное задание элементарных функций алгебры логики. Принцип двойственности. Разложение булевой функции по переменным. Задачи и упражнения по алгебре логики. Минимизация булевых функций.

    учебное пособие, добавлен 08.02.2015

  • Тензор - объект линейной алгебры, преобразующий элементы пространства. Создание абстрактных моделей в математических терминах. Произведение длин векторов и косинуса угла. Понятия скаляра, вектора и матрицы. Тензорный анализ и дифференциальная геометрия.

    реферат, добавлен 25.02.2021

  • Ознакомление с ключевыми этапами становления математики. Формирование арифметики, геометрии и алгебры. Предпосылки создания системы счисления. Значение вавилонской и египетской цивилизаций в развитии математики. Анализ греческих методов вычислений.

    реферат, добавлен 23.05.2016

  • Нахождение косинуса угла между векторами при заданных условиях. Схематический чертеж перпендикулярных плоскостей. Приведение к каноническому виду уравнения линий второго порядка. Решение системы линейных уравнений матричным методом и методом Гаусса.

    контрольная работа, добавлен 11.06.2016

  • Разрешение вопросов и задач линейной алгебры, а также определение понятий. Исследование элементов аналитической геометрии на прямых, плоскостях, в трехмерном и в N–мерном пространствах. Математический анализ, а также дифференциальное исчисление.

    курс лекций, добавлен 24.01.2011

  • Производственная сфера хозяйства и использование математических методов для оценки её эффективности. Межотраслевой баланс производства и применение линейной алгебры в экономике. Графическое отображение закономерностей и расчётф зависимости явлений.

    контрольная работа, добавлен 20.06.2012

  • Совершенствование методики изучения уравнений как моделей реальных процессов. Теоретические основы математического моделирования, его виды и классификация. Уравнения как математические модели реальных ситуаций. Анализ учебников алгебры 5-9 классов.

    дипломная работа, добавлен 05.07.2014

  • Представление функции алгебры логики в совершенной дизъюнктивной нормальной форме. Преобразования и минимизация в базисе, который состоит из функции Вебба. Порядок построения таблицы меток из исходных и первичных импликантов в виде двоичных кодов.

    контрольная работа, добавлен 19.12.2018

  • Существенная характеристика алгебры и сигма-алгебры событий, встречающихся в теории вероятностей. Изучение косвенных методов вычисления возможностей. Свойства операций сложения и умножения явлений. Особенность изучения основных законов де Моргана.

    контрольная работа, добавлен 25.11.2015

  • Характеристика доказательства по заданному модусу путем построения диаграмм Эйлера. Изучение методов математической логики для формализации высказывания. Доказательство общезначимости формулы, используя законы алгебры, равносильные преобразования.

    контрольная работа, добавлен 05.09.2016

  • В работе обсуждается единая теория поля Римана и ее расширение в 6D в общей теории относительности Эйнштейна. Показано, что в 6D возможно движение на двух сферах в форме нелинейных волн. Характеристика одной из проблем физики элементарных частиц.

    статья, добавлен 20.05.2017

  • Принципы построения пропозициональной логики. Способы исчисления высказываний с помощью алгебры. Субъектно-предикатная структура утверждений. Методы резолюции в логике предикатов. Функционирование теории множеств в системе аксиом. Виды алгоритмов.

    учебное пособие, добавлен 15.01.2016

  • Понятие элементарной суммы и произведения. Множество дизъюнктивных и конъюнктивных нормальных форм для алгебры высказываний. Тождественно-истинная и тождественно-ложная формула. Проблема разрешимости для логики высказываний. Формализация рассуждений.

    презентация, добавлен 17.04.2013

  • Понятие алгебры событий. Рассмотрение стохастического эксперимента определения вероятности. Свойства суммы и произведения событий. Методы расчета совместного появления двух величин. Основные формулы для исчисления функции Лапласа и теоремы Байеса.

    методичка, добавлен 07.10.2015

  • Рассмотрение основных свойств функций алгебры логики. Базис и основные законы булевых функций. Реализация сочетательного закона при использовании логической функции И для трех переменных. Конъюнктивная и дизъюнктивная формы закона поглощения переменных.

    лекция, добавлен 15.11.2017

  • Задание булевых функций от переменных с помощью таблицы истинности, определение формулы, виды важнейших равносильностей (законов) алгебры логики. Равносильные формулы, законы равносильности, логические уравнения. Разложение булевых функций по переменным.

    лабораторная работа, добавлен 09.08.2010

  • Теория частичных алгебраических действий. Частично упорядоченные множества. Частичные группоиды и их свойства. Примеры полурешеток. Доказательство ассоциативности. Понятие упорядоченного множества и порядкового типа. Алгебраическая теория полугрупп.

    курсовая работа, добавлен 24.03.2012

  • Система мышления, создающая взаимосвязи между заданными условиями и позволяющая делать умозаключения, основываясь на предпосылках и предположениях. Принципы построения математических теорий. Использование алгебры высказываний в современной информатике.

    реферат, добавлен 12.04.2015

  • Краткая биографическая справка о жизни английского математика, логика, профессора колледжа Корка и одного из основателей математической логики - Д. Буля. История создания булевой алгебры и ее влияние на развитие современной вычислительной техники.

    реферат, добавлен 20.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.