Задачі з комбінаторики та теорії ймовірності
Основний принцип комбінаторики. Задачі на класичне означення ймовірності. Приклади розв'язку задач на операції з множинами. Застосування аксіом теорії ймовірностей. Умовні ймовірності і незалежні події. Особливості застосування випробування Бернуллі.
Подобные документы
Розширення методів та побудова розв’язків контактних задач для пружного півпростору, просторових та плоских задач для пружних тіл, що містять порожнини, включення та розрізи, на основі теореми додавання розв’язків рівняння Лапласа та системи рівнянь Ламе.
автореферат, добавлен 10.01.2014- 52. Крайові задачі для нерівномірно параболічних та еліптичних рівнянь з виродженнями і особливостями
Розв’язок задачі Діріхле та задачі з косою похідною для еліптичних рівнянь другого порядку. Вирішення крайової задачі та задачі Коші для параболічного рівняння. Побудова оптимального керування системами, що описуються параболічною крайовою задачею.
автореферат, добавлен 28.12.2015 Особливості розбудови матриці відношення. Основні принципи оперування елементами теорії множин. Алгоритм проведення операцій над множинами, основні властивості відношень і реалізація операцій над множинами засобами програмування за допомогою мови C++.
лабораторная работа, добавлен 28.10.2012Розв’язування екстремальних задач на знаходження максимуму функціоналів, які залежать від внутрішніх радіусів областей відносно точок комплексної площини та задач з вільними полюсами на одиничному колі у випадку трьох областей, які не перетинаються.
автореферат, добавлен 29.08.2014Поняття, означення й теорема про достатні умови існування і єдності розв’язку. Знаходження кривих, підозрілих на особливий розв’язок. Випадки, коли рівняння можна проінтегрувати. Загальний метод введення параметра, неповні рівняння. Розв’язок задачі Коші.
реферат, добавлен 06.11.2017Встановлення умов існування та єдиності розв'язку обернених задач для параболічного рівняння на знаходження старшого коефіцієнта, множника у вільному члені. Особливості розв'язку у випадку нелокальних та інтегральних крайових умов та умов перевизначення.
автореферат, добавлен 28.07.2014Особливості прямих та обернених теорем теорії наближень. Визначення аналогів нерівностей Джексона і Бернштейна. Оцінка похибки наближених розв’язків задачі Коші для диференціально-операторних рівнянь методом Келі. Побудова векторів експоненціального типу.
автореферат, добавлен 28.09.2015Поняття лінійних диференціальних рівнянь першого порядку, особливості їх розв’язання за методом І. Бернуллі (добуток двох функцій). Метод варіації та інтегрування при розв’язанні лінійного диференціального рівняння першого порядку та рівняння Я. Бернуллі.
лекция, добавлен 01.05.2014Розгляд групи задач на знаходження чисел за їх відношенням. Формуванням цілісного уявлення про застосування схеми розв'язування текстових задач за допомогою рівнянь. Відпрацювання обчислювальних навичок. Особливості етапу позначення невідомого буквою.
конспект урока, добавлен 18.09.2018Вивчення поведінки на нескінченності періодичних по змінних, крім однієї, розв’язків задачі Діріхле в напівпросторі для еліптичного рівняння з періодичними коефіцієнтами високого порядку. Третя крайова задача для еліптичного рівняння другого порядку.
автореферат, добавлен 15.11.2013Вклад робіт Ферма на розвитку нових галузей в математиці: математичного аналізу, аналітичної геометрії, теорії вірогідності. Поява теорії з'єднань - комбінаторики. Велика теорема Ферма, історія її доведення. Спроби вирішення цієї математичної проблеми.
реферат, добавлен 03.05.2022- 62. Нечіткі множини
Основні поняття теорії нечітких множин. Означення лінгвістичної змінної та її базової шкали. Визначення функції належності довільної нечіткої множини та основні операції над нечіткими множинами. Опис основних алгоритмів нечіткого логічного виводу.
курс лекций, добавлен 10.04.2011 Аналіз умов моделювання розв’язків загальної крайової задачі для лінійного неоднорідного гіперболічного рівняння другого порядку. Методика формульовання теореми існування розв’язку загальних крайових періодичних задач. Побудова наближених розв’язків.
статья, добавлен 29.07.2016Побудування розв’язку у просторі узагальнених функцій однорідної задачі Рімана для півплощини в особливому випадку. Доведення теорем його існування та єдиності. Отримання інтегрального зображення в смузі. Запропонування підходу до побудови розв’язків.
автореферат, добавлен 27.08.2014З’ясування розв'язку задачі Коші. Розгляд параболічного за Петровським рівняння довільного порядку. Наявність членів з лінійно зростаючими на нескінченності коефіцієнтами. Відсутність залежності від просторових змінних. Застосування перетворення Фур'є.
статья, добавлен 25.08.2016Встановлення умов існування та єдиності розв'язку обернених задач визначення залежного від часу старшого коефіцієнта для анізотропного параболічного рівняння. Основи застосування теореми Шаудера. Аналіз властивостей інтегральних рівнянь Вольтерра.
автореферат, добавлен 17.07.2015Прямі та обернені теореми в банаховому просторі застосовано до задач наближення цілими функціями у просторах. Характеристика початкових векторів задачі Коші нескінченної гладкості класів Жевре в термінах швидкості збіжності інтегральної нев’язки задачі.
автореферат, добавлен 25.02.2015Вивчення фундаментального розв'язку задачі Коші. Дослідження диференціальних властивостей, граничної поведінки та одержання оцінок у різних нормах потенціалів. Встановлення коректної розв'язності задачі Коші в широких класах функціональних просторів.
автореферат, добавлен 10.01.2014Особливість формулювання основної властивості відношення. Розв’язок задачі на застосування означення та атрибути пропорції. Головна характеристика крайніх та середніх членів рівності двох відношень. Дослідження правильної та неправильної пропорції.
конспект урока, добавлен 17.09.2018- 70. Екстремальні задачі і квадратичні диференціали в геометричній теорії функцій комплексної змінної
Розробка методики та ефективних прийомів розв'язання екстремальних задач для (n, m) – променевих систем точок. Поняття, відмінні особливості рівнопроменевих систем точок. Доведення гіпотези Дюрена для частинного випадку скінченних лінійних функціоналів.
автореферат, добавлен 30.08.2014 Пропозиція та обґрунтування схеми наближеного розв’язання крайової задачі за допомогою кубічних сплайнів дефекту два. Дослідження умов для лінійних диференціальних рівнянь із змінним запізненням. Побудова ефективних обчислювальних алгоритмів рішення.
статья, добавлен 25.08.2016Розвиток теорії евклідової комбінаторної оптимізації в геометричному проектуванні шляхом дослідження властивостей спеціальних класів цільових функцій на множині поліпереставлень. Дослідження математичних моделей, розробка методів розв’язання класу задач.
автореферат, добавлен 29.09.2015Обчислення стабільного рангу різних класів кілець, пов’язані з даним поняттям задачі теорії кілець та модулів. Скінченні гомоморфні образи адекватних і всюди адекватних кілець. Нові класи як комутативних так і некомутативних кілець елементарних дільників.
автореферат, добавлен 29.07.2015Знаходження ймовірності можливих появ герба при підкиданні монета. Розрахунок кількості можливих варіантів набору правильного номеру за умови невідомості останніх цифр. Обчислення математичного сподівання, дисперсії та середнього квадратичного відхилення.
контрольная работа, добавлен 26.11.2015Дослідження існування глобальних класичних розв’язків у двофазній багатовимірній задачі Стефана для лінійного та квазілінійного рівнянь теплопровідности в задачах, які описують процеси горіння. Існування класичного розв’язку в стаціонарних задачах.
автореферат, добавлен 21.11.2013