Задачи, решаемые по графику функции, производной, первообразной в текстах ЕГЭ по математике
Определение и сущность производной и ее геометрический смысл. Содержание теоремы о достаточном условии экстремума. Признаки монотонности функций. Определение первообразной, формула Ньютона – Лейбница и геометрический смысл определенного интеграла.
Подобные документы
Дифференциальное исчисление функций, геометрический и физический смысл ее производной. Логарифмическое дифференцирование; интегральное исчисление; градиент. Нахождение площадей плоских фигур. Геометрические и физические приложения кратных интегралов.
курс лекций, добавлен 29.06.2016Систематизация и закрепление основных знаний учащихся о первообразной, интеграле и дифференциале. Роль Лейбница, Бернулли и Ньютона в становлении интегрального исчисления. Сущность процесса интегрирования. Применение интеграла в различных областях науки.
презентация, добавлен 23.06.2013Формирование современного понимания функциональной зависимости. Достаточные условия экстремума функции. Нахождение экстремума с помощью производной. Определение предела функции в теореме Коши. Эквивалентность различных определений предела функции.
реферат, добавлен 03.10.2012Понятие непрерывной функции y=f(x) на промежутке Х. Доказательство непрерывности функции y=cos(x) на всей числовой оси с использованием формулы разности косинусов. Геометрический смысл теоремы о существовании нуля. Метод приближенного решения уравнения.
презентация, добавлен 21.09.2013Определение производной. Схема вычисления производной. Основные правила дифференцирования. Производная сложной и обратной функций. Использование понятия производной в экономике. Понятие дифференциала функции и его применение в приближенных вычислениях.
курсовая работа, добавлен 16.09.2013Определение производных высших порядков. Дифференцирование функции на определенном отрезке. Нахождение производной высшего порядка от данной функции. Механический смысл второй производной. Ускорение движения точки. Скорость как производная.
лекция, добавлен 05.03.2009Вычисление площади плоской фигуры с применением определенного интеграла. Определение объема тела вращения при помощи геометрических расчетов. Понятие и признаки несобственного интеграла. Несобственные интегралы с бесконечными пределами интегрирования.
лекция, добавлен 03.04.2019Определённый интеграл - одно из основных понятий математического анализа. Первообразная, формула Ньютона-Лейбница. Сущность понятия, свойства определенного интеграла. Скорость прямолинейного движения тела. Примеры решения задач с определенным интегралом.
презентация, добавлен 20.01.2022Необходимые и достаточные условия существования максимума и минимума функции, выбор метода нахождения экстремумов и полное математическое обоснование. Задачи, связанные с нахождением условного экстремума. Геометрический смысл метода множителей Лагранжа.
курсовая работа, добавлен 18.08.2009Правила решения уравнений первого порядка, нахождение неизвестной производной функции (дифференциала). Геометрический смысл общего и частного решения. Уравнения с разделяющимися переменными. Простейшие случаи нахождения интегрирующегося множителя.
курс лекций, добавлен 11.10.2014Сущность неопределенного интеграла. Определение производной от него, нахождение его дифференциала как подынтегрального выражения. Свойства неопределенного интеграла от алгебраической суммы (разности) двух функций, от дифференциала некоторой функции.
презентация, добавлен 18.09.2013Понятие определенного интеграла. Описание классов интегрируемых функций. Анализ свойств определенного интеграла и методов его вычисления. Примеры вычисления интеграла при помощи формулы Ньютона–Лейбница, замены переменной, интегрирования по частям.
конспект урока, добавлен 18.04.2016Решение систем линейных уравнений методом Гаусса. Линейные операции над векторами и разложение вектора по ортам координатных осей. Геометрический и физический смысл определенного интеграла. Предел и непрерывность функции комплексного переменного.
курс лекций, добавлен 18.04.2016Понятие и общая характеристика выпуклой функции, условия ее формирования и требования к неравенству. Теорема достаточного условия выпуклости и перегиба. Точка перегиба как точка экстремума первой производной. Определение производной данной функции.
презентация, добавлен 21.09.2013Равномерное стремление к предельной функции. Дифференцирование под знаком интеграла. Случай, когда пределы интеграла зависят от параметра. Применение правила Лейбница к вычислению производной по параметру интеграла. Исследование функции на непрерывность.
контрольная работа, добавлен 13.10.2013- 66. Методика разработки элективного курса "Приложение производной" в условиях профильной дифференциации
Проведение операции нахождения производной. Исследование таблицы формул дифференцирования. Определение интервалов монотонности и экстремумов. Основная характеристика изучения интервалов выпуклости, вогнутости, а также точек перегиба графика функции.
курсовая работа, добавлен 03.10.2022 Понятие и отличительные признаки первообразной функции, требования к ней, характерные свойства, сферы применения. Нахождение площадей плоских фигур. Сущность определенного интеграла и порядок его нахождения, связь с задачей расчета площади плоских фигур.
задача, добавлен 14.01.2012Изучение формулы бесконечно убывающей геометрической последовательности. Способы задания функции одной переменной. Геометрический смысл понятия "предел". Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз.
лекция, добавлен 26.01.2014Доказывание теоремы признаков дифференцируемости обобщенной производной Шварца, в отличие от функций, дифференцируемых по Ньютону. Исследование существований левой и правой производных. Суть формулы Лагранжа конечных приращений классического анализа.
статья, добавлен 20.05.2018Определение дифференциала функции, его геометрический смысл и параметры. Инвариантность формы дифференциала, его применение в приближенных вычислениях. Локальный экстремум, теоремы Ферма, Ролля, Лагранжа и Коши, их сущность, доказательства и применение.
лекция, добавлен 07.07.2015Характеристика признаков монотонности функций. Правила отыскания локального экстремума, определение точки максимума и минимума. Сущность теоремы Ферма. Отыскание значений непрерывной на отрезке функции. Направление выпуклости графика и точки перегиба.
лекция, добавлен 29.09.2013Выявление вида неопределенности и вычисление предела функций. Формулы производной степени и дроби функции, исчисление производной. Определение непрерывной числовой прямой и исследование функции, её критические точки. Вычисление неопределенных интегралов.
контрольная работа, добавлен 20.01.2013Порядок определения производной сложной функции. Сущность и процесс расчета инвариантности формы первого дифференциала. Характеристика производной обратной функции. Особенности логарифмической производной, алгоритм вычисления. Дифференцирование функции.
лекция, добавлен 29.09.2013Понятие производной по аналогии с мгновенной скоростью. Предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю. Скорость изменения функции в заданной точке. Прямолинейное движение материальной точки.
контрольная работа, добавлен 20.02.2017Понятие экстремума, анализ теоремы о пределах функции. Знакомство с правилом нахождения минимальных и максимальных точек. Применение локальной формулы Тейлора. Характеристика экстремумов функций многих переменных. Основные признаки экстремума функции.
контрольная работа, добавлен 06.02.2012