Булева алгебра регулярных замкнутых множеств
Аксиомы топологии, примеры топологических пространств. Понятие про открытое и замкнутое множество. Аксиомы булевой алгебры, примеры. Булево объединение и пересечение произвольного семейства элементов алгебры. Понятие про регулярные замкнутые множества.
Подобные документы
Понятие множества, его структура и главные элементы, существующие операции и порядок их реализации, способы задания. Сущность и методика пересечения, объединения, вычитания. Механизм и основные правила нахождения декартового произведения множества.
контрольная работа, добавлен 24.02.2015Современные рассуждения, демонстрирующие противоречивость наивной теории множеств. Предложенный Б. Расселом "парадокс Тристрама Шенди". Нетривиальные следствия аксиомы выбора. Рассмотрение рядов квадратов натуральных чисел, степеней двойки, факториалов.
статья, добавлен 15.02.2019Применение понятия о характеристических функциях подмножеств, теоремы о порядках множества подмножеств конечного множества для двух частных случаев. Конечное несамопринадлежащее множество простой структуры. Схема алгоритма определения порядка множества.
статья, добавлен 26.04.2019Понятия и операции реляционной алгебры. Создание реляционной модели данных. Последовательность шагов для получения результирующего отношения. Операции реляционной алгебры, обеспечивающие выполнение каждого шага. Способ объединения двух отношений.
краткое изложение, добавлен 23.09.2015Определение и направления исследования алгебры путей на связных графах. Описание их свойств и центральных элементов тел, частных для случая, когда граф является полным неориентированным графом без петель. Формулирование теорем и их доказательство.
статья, добавлен 31.05.2013Основы арифметических действий над натуральными числами. Операции декартового произведения множеств. Характеристика комплексных чисел и возможные операции над ними. Пересечение, объединение, дополнение, декартово произведение в курсе школьной математики.
реферат, добавлен 08.10.2012Использование формул комбинаторики при непосредственном вычислении вероятностей. Понятие и примеры перестановок, размещений и сочетаний. Выявление и оценка количества комбинаций, которые можно составить из элементов заданного конечного множества.
презентация, добавлен 20.11.2011Понятие элементарной суммы и произведения. Множество дизъюнктивных и конъюнктивных нормальных форм для алгебры высказываний. Тождественно-истинная и тождественно-ложная формула. Проблема разрешимости для логики высказываний. Формализация рассуждений.
презентация, добавлен 17.04.2013Понятие и предназначение функции алгебры логики, характеристика табличного, графического, координатного, числового и аналитического способа её задания. Специфика составления карты Карно с помощью функции алгебры логики, таблица истинности переменных.
реферат, добавлен 15.11.2017Сущность понятия "генетическая модель". Канонический вид дискретной модели вольтерра. Операторы умножения в алгебре, идемпотенты и нильпотенты. Условия ассоциативности генетической алгебры. Трансверсальность в генетических алгебрах вольтерровского типа.
диссертация, добавлен 19.06.2015- 61. Теория графов
Диаграмма Эйлера-Венна для множества. Системы счисления с креном. Построение Эйлеровой цепи в неориентированном графе. Определение минимального остовного дерева в неориентированном нагруженном графе. Понятие булевой функции и методы ее представления.
контрольная работа, добавлен 13.03.2017 Понятие множества как фундаментального неопределяемого понятия математики. Сущность пустого и универсального множеств. Способы их задания. Свойства операций над множествами, их сравнение. Диаграммы Эйлера как представление отношений между подмножествами.
презентация, добавлен 19.09.2017Аксиомы сравнения, противоречия, границ, воздействия. Аксиомы структуры информационного обмена. Свойства комплексных чисел и показательной функции. Способы укладки отрезков. Неожиданности комплексных чисел. Алгебраическая запись взаимодействия объектов.
учебное пособие, добавлен 10.03.2017Применение теории вероятности для решения технических задач, характеристика ее основных понятий. Основы теории множеств, алгебра событий. Аксиомы теории вероятностей, ее правила. Теорема сложения и умножения вероятностей. Формула полной вероятности.
лекция, добавлен 30.11.2016- 65. Множества
Понятие и структура множеств как совокупности объектов, объединенных некоторым признаком, свойством. Их основные элементы и направления математического исследования, способы задания. Изображение множеств и существующие операции, проводимые над ними.
методичка, добавлен 15.11.2013 Пространство элементарных исходов. События в дискретном пространстве. Сумма (объединение), произведение (пересечение), разность событий. Основные свойства операций над событиями. Вероятность в классическом пространстве. Понятие счётного множества.
презентация, добавлен 22.09.2017Исследование особенностей математической индукции, одного из методов доказательства истинности некоего утверждения для всех натуральных чисел. Характеристика аксиомы Пеано, аксиомы существования минимума, доказательства аксиомы индукции как теоремы.
статья, добавлен 25.01.2012Строение абелевых групп симметрий хиггсовского потенциала в вакууме для N-дублетной хиггсовской модели. Типы центральных простых конечномерных некоммутативных йордановых супералгебр. Конструкция кольца частных для обобщенной алгебры Новикова-Пуассона.
научная работа, добавлен 28.10.2018Основные понятия векторной алгебры, примеры решения задач. Вычисление производных тригонометрических функций. Нахождение точек экстремума, минимума и максимума функции, построение ее графика. Определение площади фигуры при помощи интегрирования.
контрольная работа, добавлен 04.11.2012Деление и история алгебры, происхождение ее термина. Древнейшие сочетания по алгебре, появление от арабов и ее развитие в Европе в эпоху Возрождения. Решение уравнений третей и четвёртой степени. Некоторые математические знаки и даты их возникновения.
реферат, добавлен 27.09.2014Программа стандартизации математики. Канторовское определение и понятие множества, разработка аксиоматизации. Обозначение элементов и заключение в фигурные скобки, разделение запятыми. Характеристические условия и форма логического утверждения.
контрольная работа, добавлен 28.09.2011- 72. Джордж Буль
Краткая биографическая справка о жизни английского математика, логика, профессора колледжа Корка и одного из основателей математической логики - Д. Буля. История создания булевой алгебры и ее влияние на развитие современной вычислительной техники.
реферат, добавлен 20.10.2015 Задание булевых функций от переменных с помощью таблицы истинности, определение формулы, виды важнейших равносильностей (законов) алгебры логики. Равносильные формулы, законы равносильности, логические уравнения. Разложение булевых функций по переменным.
лабораторная работа, добавлен 09.08.2010Изучение матриц и линейных уравнений как основных элементов линейной алгебры. Описание элементов векторной алгебры. Исследование основ аналитической геометрии на плоскости и в пространстве. Составляющие производных, функций и математического анализа.
курс лекций, добавлен 23.09.2012Характеристика формальных описаний элементов и систем, которые опираются на язык теории множеств и графов. Особенности элементов множества - любых объективных и субъективных понятий, объединяемых в соответствии с некоторым законом, правилом, признаком.
контрольная работа, добавлен 14.09.2010