Элементы теории множеств

Образование множеств и выполнение элементарных операций. Образование подстановки её степеней. Последовательные степени до получения тождественной подстановки. Малая конечная арифметика. Работа по правилу неповторяемости элементов в строках и столбцах.

Подобные документы

  • Рассмотрение элементов теории графов. Характеристика множеств и операций над ними. Основные законы комбинаторики. Основы построения матрицы смежности. Геометрическая реализация графов. Исследование ключевых особенностей логики высказываний и операций.

    курс лекций, добавлен 01.04.2016

  • Характеристика понятия и сущности, способов задания, основных операций, свойств характеристических функций множеств. Изучение декартового произведения множеств, сравнение их мощности, описание формул включений и исключений. Метод математической индукции.

    лекция, добавлен 28.04.2015

  • Определение понятия линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Характеристика неравенства Коши-Буняковского. Изучение связных, несвязных, ограниченных, неограниченных множеств. Анализ компактных множеств.

    курсовая работа, добавлен 21.09.2017

  • Теоретические аспекты понятия разности двух множеств как теоретико-множественной операции в математике, особенности пустого множества. Основные свойства разности множеств и сущность законов де Моргана. Реализация операции с помощью компьютерных программ.

    реферат, добавлен 18.02.2012

  • Сущность перспективности математических моделей, учитывающих стохастическую неопределенность и нечеткость. Описание вероятностных множеств в смысле Hirota. Моделирование операций над нечеткими вероятностными множествами. Треугольные нормы и конормы.

    статья, добавлен 29.10.2013

  • Разложение подстановок в произведение циклов с непересекающимися орбитами. Исследование наборов состоящих из одного и того же количества элементов, отличающихся только порядком следования элементов. Рассмотрение симметрической группы третьей степени.

    курсовая работа, добавлен 23.04.2024

  • Понятия бинарного отношения как подмножества декартова произведения. Элементы теории множеств и комбинаторики, три основных метода пересчета, превращение конечного множества в упорядоченное с помощью переписи всех элементов множества в некоторый список.

    реферат, добавлен 31.01.2014

  • Основные понятия и обозначения, связанные с множествами и операциями над ними. Формула мощности объединения нескольких множеств. Теорема Кантора-Бернштейна и ее доказательства равномощности. Бинарное отношение эквивалентности и порядка. Теорема Цермело.

    курс лекций, добавлен 28.12.2013

  • Обобщение одного из известных результатов С.С. Кислицына, связанного с нахождением числа нумераций конечных частично упорядоченных множеств. Понятия и обозначения теории бинарных отношений и теории групп. Существование отношений частичного порядка.

    реферат, добавлен 22.05.2017

  • Решение проблемы о структуре окрестности притягивающих, слабо притягивающих и неасимптотически устойчивых инвариантных множеств. Классификация компактных и замкнутых инвариантных множеств. Метод знакопостоянных функций Ляпунова для динамических систем.

    автореферат, добавлен 19.08.2018

  • Программа стандартизации математики. Канторовское определение и понятие множества, разработка аксиоматизации. Обозначение элементов и заключение в фигурные скобки, разделение запятыми. Характеристические условия и форма логического утверждения.

    контрольная работа, добавлен 28.09.2011

  • Поиск способа представления системы как совокупности взаимосвязанных множеств. Обоснование принципов геометрической интерпретации понятий "элемент системы" и "система". Аналогия между геометрией и теорией информации. Информационные свойства пространства.

    статья, добавлен 26.04.2017

  • Форма классической логики и теории множеств, базирующиеся на понятии нечёткого множества. Применение нечетких множеств в экономическом, финансовом анализе и в современных технологиях управления. Алгоритм по формализации задачи в терминах нечеткой логики.

    презентация, добавлен 29.06.2022

  • Проблема сложности вычислений как одна из важнейших проблем в дискретной математики. Множества и основные операции над ними. Основные законы операций над множествами. Прямые произведения и функции. Теорема Кантора. Матричный способ задания множеств.

    реферат, добавлен 16.05.2012

  • Основы теории множеств, переключательных функций, комбинаторного анализа и теории графов. Диаграммы Эйлера, операции над множествами. Бинарные отношения и отображения. Свойства элементарных булевых функций. Основные понятия и определения комбинаторики.

    учебное пособие, добавлен 11.10.2014

  • Характеристика диаграммы Эйлера-Венна для пересечения двух множеств. Различие между арифметическим сложением и объединением. Методика определения локального коэффициента эмерджентности Хартли. Проблема оценки абсолютной величины системного эффекта.

    статья, добавлен 27.04.2017

  • Изучение математических моделей объектов, процессов и зависимостей, решаемых дискретной математикой. Анализ элементов теории множеств. Понятие и применение математической логики. Определение алгебраических операций. Теория графического представления.

    учебное пособие, добавлен 19.12.2012

  • Операции над множествами. Декартово произведение множеств. Бинарные отношения, функции и порядок. Область значений бинарного отношения. Класс эквивалентности элемента. Сочетания, размещения и перестановки элементов. Бином Ньютона, теория алгоритмов.

    реферат, добавлен 19.01.2012

  • Характеристика общих понятий теории множеств. Изучение основных операций над множествами. Изучение соответствия между множествами, отображения. Анализ кортежей, декартовых произведений. Бинарные отношения и их свойства. Описание элементов комбинаторики.

    презентация, добавлен 27.01.2017

  • Аксиомы теории Цернело-Френкеля по устранению. Аксиома выбора как один из важнейших теоретико-множественных принципов, альтернативные формулировки аксиомы и её применение. Принцип вполне упорядочивания и лемма Цорна для частично упорядоченных множеств.

    реферат, добавлен 11.10.2014

  • Основные понятия теории множеств. Операции над ними. Свойства алгебраического тождества. Упорядоченные множества элементов. Структура и способы представления многомерных матриц. Правило получения обратной матрицы. Многомерно-матричное дифференцирование.

    реферат, добавлен 16.01.2018

  • Основные способы задания множеств. Анализ рефлексивных, симметричных и транзитивных бинарных отношений. Характеристика исследования ориентированных графов. Главные законы, определяющие свойства логических операций. Изучение элементарных булевых функций.

    презентация, добавлен 06.09.2017

  • Определение и примеры мощности множеств. Определение бинарного отношения. Описание способов задания отношений. Характеристика свойств бинарных отношений. Изучение отношений эквивалентности и частичного порядка. Анализ свойств отображения функций.

    лекция, добавлен 25.12.2016

  • Понятие пространства элементарных событий. Сведения из теории конечных множеств и комбинаторики. Декартово произведение как одна из важнейших конструкций математики. Изучение взаимосвязей логики, интуиции и приложений. Регламент деятельности учителя.

    книга, добавлен 06.05.2013

  • Основные понятия теории множеств и теории графов. Графические диаграммы Венна. Матрица инцидентности ориентированного и неориентированного графа. Анализ матрицы смежности графа. Особенности частей, сурграфов и подграфов, маршрутов, цепей и циклов.

    методичка, добавлен 15.10.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.