Теоретические основы решения задач по начертательной геометрии

Изучение методов изображения пространственных форм на плоскости. Проецирование прямой линии. Определение натуральной величины прямой. Главные линии плоскости. Кривые линии и поверхности. Аксонометрические проекции. Решение метрических и позиционных задач.

Подобные документы

  • Характеристика общего уравнения прямой. Описание векторного, канонического и параметрического уравнения прямой. Вычисление угла между двумя прямыми. Условие параллельности и перпендикулярности двух прямых. Уравнения прямой, проходящей через две точки.

    лекция, добавлен 09.07.2015

  • Уравнение прямой с направляющим и нормальным вектором. Кривые второго порядка, полярная система координат. Определение терминов "гипербола", "парабола" и "эллипс". Поворот и параллельный перенос системы координат. Векторная функция скалярного аргумента.

    презентация, добавлен 21.09.2017

  • Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве. Понятие плоскости и пространства геометрии. Общепринятые изображения плоскости. Аксиомы стереометрии, их сущность и содержание. Следствия из аксиом стереометрии.

    презентация, добавлен 13.04.2012

  • Сущность и особенности начертательной геометрии. Первые идеи об ортогональном проецировании пространственных фигур на плоскость. Применение теории геометрических преобразований. История возникновения и развития начертательной геометрии в России.

    реферат, добавлен 29.04.2018

  • Квазискалярное произведение двух точек на проективной плоскости. Общий вид формулы Эйлера. Пример телепортации прямой из гиперболической геометрии в эллиптическую. Внутренняя и наружная область окружности на сфере. Части тора, особенности геометрии.

    статья, добавлен 03.05.2012

  • Определение и свойства матриц, операции над ними. Практическое значение правила Крамера. Суть метода Гаусса. Взаимное расположение прямых на плоскости. Проекции вектора на ось. Сущность инверсии в перестановке чисел. Скалярное произведение векторов.

    шпаргалка, добавлен 23.01.2011

  • Уравнение прямой с направляющим вектором. Математическое описание прямой с нормальным вектором. Уравнение прямой с угловым коэффициентом. Математическое выражение кривых второго порядка. Полярная система координат. Векторная функция скалярного аргумента.

    презентация, добавлен 29.09.2017

  • Определение понятия нелинейного программирования. Раскрытие специфики нелинейных программ и методов их решения. Изучение градиентных методов решения задач выпуклого программирования. Решение задач нелинейного программирования методом множителей Лагранжа.

    контрольная работа, добавлен 26.12.2011

  • Из истории начертательной геометрии, требования к простейшим изображениям и их построение. Характеристика центрального проецирования как наиболее общего случая получения проекций. Суть параллельного проецирования. Пересечение многогранников плоскостью.

    реферат, добавлен 06.10.2010

  • Построение линии сечения поверхности плоскостью. Пересечение поверхностей вращения с плоскостью и прямой. Определение видов линий в сечении прямого кругового цилиндра и прямого кругового конуса. Развертка цилиндрической и конической поверхностей.

    лекция, добавлен 24.07.2014

  • Развитие производственной деятельности человечества. Изложение методов начертательной геометрии французским геометром Гаспаром Монжем. Новые пути в теории графики. Углубление теории начертательной геометрии, расширение приложений ее графических методов.

    реферат, добавлен 29.09.2017

  • Использование алгебраического метода решения задач на построение в теории конструктивных задач. Определение взаимосвязи алгебры и геометрии. Обзор примеров задач на построение и схем их решения. Построение отрезков, заданных основными формулами.

    курсовая работа, добавлен 25.01.2017

  • Изображение стандартных геометрических тел на плоскости. Построение проекции правильного шестиугольника, куба, треугольника, прямой призмы или цилиндра, пирамиды или конуса. Изучение соединения вершины стереометрической фигуры с вершинами основания.

    презентация, добавлен 12.10.2015

  • Разработка теории преобразований, обеспечивающей точность отображения объектов на плоскость. Способы задания гомотетии. Свойства аффинного преобразования. Применение в геометрии математических теорий подобия на плоскости при различных системах координат.

    курсовая работа, добавлен 30.07.2017

  • Рассмотрение эллипса как трехмерной функции, все точки которой лежат в одной плоскости под углом к плоскости круга, для нахождения решения эллиптического интеграла. Образование семейства кривых от окружностей в плоскости. Определение длины дуги эллипса.

    статья, добавлен 03.03.2018

  • Первая и вторая квадратичная форма. Построение проекции вектора кривизны линии на нормаль поверхности в точке, через которую проходит эта кривая. Изучение кривизны всех линий на поверхности, рассмотрение плоских сечений. Уравнение индикатрисы Дюпена.

    контрольная работа, добавлен 01.09.2017

  • Аксиома — утверждение, принимаемое без доказательства. Аксиомы принадлежности точек и прямых. Теоремы - утверждения геометрии, которые доказываются на основании аксиом и ранее доказанных утверждений. Аксиомы расположения точек на прямой и плоскости.

    презентация, добавлен 13.04.2012

  • Точная формула провисающей цепочки Галилея. Разгадка секрета цепной линии: график показательной функции. Связь между кривой и формой висящей цепочки: поиск уравнения линии. Подобие цепных линий, определение коэффициента подобия в преобразовании кривой.

    реферат, добавлен 09.11.2010

  • Частные случаи уравнений плоскости. Сущность параметрического и канонического уравнения, взаимное расположение прямых. Нормальное уравнение плоскости, специальные виды уравнений. Решение уравнений с направляющим вектором. Пример общего уравнения прямой.

    презентация, добавлен 21.09.2017

  • Использование числовой прямой для введения понятия модуля, анализ его свойств при помощи координатной прямой. Примеры задач с модулем, построение графиков функций. Решение уравнений методом интервалов, способом возведения в квадрат и с помощью графиков.

    курсовая работа, добавлен 03.09.2012

  • Функционально-графические методы решения алгебраических задач с параметрами и модулем. Приемы выполнения изображения на плоскости и их использование в решении задач с параметрами и модулем. Линейные и квадратные уравнения. Графики элементарных функций.

    методичка, добавлен 26.09.2013

  • История зарождения перспективного изображения с использованием аксонометрии. Особенности центральной сферической проекции при зрительном восприятии чертежа. Свойства перспективных изображений. Правила расположения точек в перпендикулярной плоскости.

    статья, добавлен 22.03.2016

  • Сущность проекционного черчения. Способы получения графических изображений. Рассмотрение центрального и параллельного проецирования. Ортогональные проекции и основные виды чертежа. Проецирование точки на три плоскости проекций координатного угла.

    лекция, добавлен 27.09.2017

  • Ознакомление с сущностью прямых и обратных задач инженерной графики. Рассмотрение основных свойств ортогонального проецирования. Формулирование теоремы о проецировании прямого угла. Определение угла наклона прямой, общего положения к плоскостям проекций.

    лекция, добавлен 24.07.2014

  • Определение и свойства модуля (абсолютной величины) действительного числа. Расстояние между точками числовой прямой. Графическое изображение на прямой окрестности точки как множества решений неравенства. Изучение правил сложения и вычитания модулей.

    презентация, добавлен 21.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.