Сущность метода наименьших квадратов
Метод наименьших квадратов - один из основных способов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Методика определения частных коэффициентов эластичности на основе уравнений регрессии.
Подобные документы
Исторические сведения о возникновении и распространении магических квадратов. Основные теории их построения и преобразования. Методы построения и свойства мало исследованных совершенных магических квадратов. Решение математических комбинаторных задач.
книга, добавлен 16.05.2014Использование двойственного симплекс-метода при решении задачи линейного программирования. Определение единичных векторов, составленных из коэффициентов при неизвестных и свободных членов в системе уравнений; нахождение максимального значения функции.
задача, добавлен 21.08.2010Определение наилучшей функции по методике наименьших квадратов. Порядок вычисления интерполяционного полинома Лагранжа, который проходит через все заданные точки. Принципы и особенности представления приближенной функции многочленом второй степени.
контрольная работа, добавлен 15.05.2014Поиск выборочных ковариации и коэффициента корреляции. Доверительный интервал для математического ожидания величины. Оценка параметров модели методом наименьших квадратов. Тестирование близости эмпирического распределения остатков моделей к нормальному.
контрольная работа, добавлен 10.11.2017Ряды наблюдений и их характеристики. Эмпирические распределения случайной величины. Случайные ошибки измерения и производные. Алгебра линейной регрессии, обозначения и определения. Модель линейной регрессии, формы уравнения и автокорреляция ошибок.
курс лекций, добавлен 27.10.2015Задача корреляционного анализа и уравнение регрессии. Особенности и этапы проведения регрессионного анализа. Определение функции и оценка неизвестных значений. Границы доверительных интервалов. Этапы и технология работы с пакетом анализа "Регрессия".
презентация, добавлен 18.12.2012Подходы, описывающие получение формализованных уравнений избыточных измерений крутизны преобразования без усреднения. Коэффициенты при выходных величинах. Решение задачи пространственно-временного усреднения в структуре комбинаторных уравнений величин.
статья, добавлен 28.09.2016Формулировка теоремы, утверждающей, что тройки простых чисел составляют бесконечное множество. Решение задачи подбора совокупности двух параметров, удовлетворяющих принцип наименьших квадратов. Функция натурального аргумента, оценка погрешностей.
статья, добавлен 26.01.2019Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.
доклад, добавлен 29.04.2021Математическое моделирование, форма и принципы представления моделей и особенности их представления. Компьютерное моделирование при обработке опытных данных, типы интерполяции. Этапы алгоритма сглаживания опытных данных методом наименьших квадратов.
курс лекций, добавлен 19.06.2015Краткое описание развития учения о магических квадратах. Методы построения рамочных магических квадратов нечетного, нечетно-четного и четно-четного порядков - пошаговое описание и наглядное изображение. Построение магических квадратов порядка 3 и 4.
статья, добавлен 26.04.2019Задачи корреляционно-регрессионного анализа. Корреляция случайных величин. Линейная регрессия, описание объекта, факторы, формирующие моделируемое явление. Анализ матрицы коэффициентов парных корреляций. Построение уравнения регрессии, смысл модели.
реферат, добавлен 20.03.2010Целесообразность использования статистических методов в проблеме поиска оптимальных условий проведения эксперимента. Наука планирования и организации эксперимента. Обработка экспериментальных данных методом наименьших квадратов, регрессионная зависимость.
дипломная работа, добавлен 10.02.2016Множественный регрессионный анализ - метод, позволяющий производить оценку с любым количеством объясняющих переменных. Методика расчета критерия значимости уравнения регрессии. Разработка процедуры умножения матриц на языке программирования Pascal.
статья, добавлен 31.07.2018Методы решения систем линейных уравнений: Гаусса (последовательного исключения), Крамера, матричный метод. Классификация систем линейных уравнений по числу уравнений, неизвестных. Свойства определителей. Система ступенчатого вида с единственным решением.
контрольная работа, добавлен 23.04.2011Описание применения простого метода оценки ошибки интерполяции. Исследование свойства интерполированного сигнала. Пример данных, недостаточно описывающих сигнал. Использование и сущность метода оценки ошибки интерполяции для выбора метода интерполяции.
статья, добавлен 07.11.2018Сущность метода половинного деления. Метод итерации как один численных методов решения математических задач, используемый для приближённого решения алгебраических уравнений и систем. Метод Ньютона как итерационный численный метод нахождения корня (нуля).
реферат, добавлен 01.11.2019Численное решение уравнения. Условия, наложенные на функцию. Графический метод определения корней. Метод дихотомии и процесс итераций. Первые приближения для метода касательных. Метод секущих и хорд. Сущность комбинированного метода решения уравнения.
курсовая работа, добавлен 08.07.2012Особенности применения метода дополнительного аргумента для вычисления необходимых коэффициентов характеристической системы. Методика доказательства существования решения задачи Коши. Площадь криволинейной трапеции как физический смысл интеграла.
дипломная работа, добавлен 01.10.2017F критерий Фишера как параметр оценки качества регрессии. Пример дисперсионного анализа результатов регрессии. Оценка значимости коэффициентов регрессии и корреляции. Значение t-критерия Стьюдента и доверительных интервалов. Средняя ошибка аппроксимации.
презентация, добавлен 23.08.2016Функциональная, статистическая и корреляционная зависимости. Корреляционный анализ в теории вероятности, его сущность, необходимые и достаточные условия. Свойства коэффициента корреляции. Задачи и этапы регрессионного анализа, виды уравнений регрессии.
презентация, добавлен 19.07.2015- 97. Метод Гаусса
Рассмотрение системы линейных уравнений. Характеристика наиболее мощного и универсального инструмента для нахождения решения любой системы линейных уравнений - метода Гаусса (последовательного исключения неизвестных). Примеры решений для чайников.
задача, добавлен 24.11.2014 Построение уравнения линейной регрессии. Оценка статистической значимости коэффициентов регрессии. Анализ качества построенной модели, с помощью показателей корреляции, детерминации и средней ошибки аппроксимации. Надежность результатов моделирования.
контрольная работа, добавлен 23.05.2021Понятие регрессионного анализа и его цели. Использование линейных и нелинейных функций при построении регрессионных моделей. Проверка на значимость коэффициентов регрессии по статистическому критерию Стьюдента и ее уравнения с помощью F-критерия Фишера.
контрольная работа, добавлен 19.11.2013Аналитические методы решения уравнений математической физики в частных производных. Численные методы решения уравнений матфизики. Дискретизация расчетной области, формирование матрицы неизвестных температур системы линейных уравнений, построение изотерм.
курсовая работа, добавлен 01.04.2022