Применение производных к исследованию функций и построению графиков
Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.
Подобные документы
Решение задач с применением логарифмической и показательной функций для различных областей естествознания и жизнедеятельности: в банковской сфере, демографических вопросах, для экономических расчетов, в географии, биологии, химии, физике, астрономии.
контрольная работа, добавлен 13.01.2014Графическое решение квадратного уравнения. График уравнения с двумя переменными как множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство, принципы его составления. Применение графиков в решении неравенств.
реферат, добавлен 03.04.2012Использование программного обеспечения для построения графиков при решении математических задач. Определение функции на заданном отрезке с помощью Мастера построения графиков. Особенности их форматирования. Определение положительного корня уравнения.
контрольная работа, добавлен 07.10.2016Обратные тригонометрические функции (аркфункции): определение и свойства. Теоремы об аркфункциях. Доказательство числовых тождеств. Решение уравнений и неравенств с аркфункциями. Использование свойств монотонности обратных тригонометрических функций.
контрольная работа, добавлен 22.04.2012Разработка новых методов аппроксимации широкого класса функций - локально липпшцевых функций, построение на их основе новых методов оптимизации негладких гладких функций, к которым неприменимы условия сходимости оптимизационных процессов высокого порядка.
автореферат, добавлен 21.03.2015Изучение единственной абсолютно монотонной функции наилучшего равномерного приближения на отрезке. Использование специального критерия единственности наилучшего приближения клином. Применение теоремы для других конусов, состоящих из непрерывных функций.
статья, добавлен 07.08.2020Биография Пифагора, история открытия и различные формулировки его теоремы. Характеристика способов доказательства, особенности геометрических и алгебраических методов. Значение теоремы Пифагора и ее применение. Практикум по решению задач школьного курса.
курсовая работа, добавлен 30.03.2013Основные методы, использующие информацию о производных при поиске точки минимума: метод средней точки, хорд, касательных Ньютона, кубической аппроксимации. Их краткое описание, примеры выведения уравнений, коэффициентов функций и координат точек.
презентация, добавлен 09.07.2015Экстремумы функций многих переменных. Необходимые и достаточные условия экстремума. Локальные и условные экстремумы. Метод множителей Лагранжа. Описание экстремумов функции переменных, формулировании необходимого и достаточного условия их существования.
контрольная работа, добавлен 27.08.2010Характеристика теоремы Фока-Куни для обобщения аналитических функций. Описание математических методов получения аналога теоремы Фока-Куни в круге. Анализ критерия разрешимости задачи аналитического продолжения. Характеристика интеграла типа Коши.
статья, добавлен 26.05.2018Свойства функций, непрерывных на отрезке. Теоремы и их доказательства. Определение производной и ее приложения. Закон равномерного движения, механический смысл производной. Геометрический смысл производной. Непрерывность дифференцируемой функции.
лекция, добавлен 05.03.2009Расчет и построение графиков переходных функций и частотных характеристик при заданных числовых значениях коэффициентов. Идеальное дифференцирующее звено. Обратное преобразование Лапласа. Вывод передаточной функции последовательно соединенных звеньев.
контрольная работа, добавлен 19.03.2012Краткая биография древнегреческого философа и ученого Пифагора Самосского, его роль в развитии математики. Моральный кодекс пифагорейцев. История создания теоремы Пифагора, различные формулировки и способы доказательства. Задачи на применение теоремы.
реферат, добавлен 18.04.2015- 114. Производные функций
Определения дифференцирования в линейных пространствах. Связь производных Фреше и Гато. Необходимое условие экстремума функции, формула конечных приращений и приложения. Понятия теории множеств, формула конечных приращений и следствие теоремы Лагранжа.
курсовая работа, добавлен 25.04.2014 Теоремы о дифференцировании сложной функции двух переменных. Необходимое и достаточное условия экстремума функции нескольких переменных. Интегрирование тригонометрических, рациональных функций, некоторых видов иррациональностей. Задача и теорема Коши.
шпаргалка, добавлен 25.01.2016- 116. Mathcad
Изучение методов обработки информации при помощи Mathcad, возможных алгоритмов написания программ и способов отображения информации. Построение графиков функций. Расчет количества информации при кодировании равномерным и неравномерным двоичным кодом.
контрольная работа, добавлен 28.09.2020 История развития представлений о функциональных зависимостях в точных и естественных науках. Формулировка определения Эйлера, Лобачевского и Дирихле. Рассмотрение основных видов функций в математике, изучение их свойств и применения, построение графиков.
курсовая работа, добавлен 25.10.2023Виды графиков линейных функций y=kx+m, y=kx2, y=k/x, у=ax2+bx+c (прямая, парабола, гипербола, объединение двух лучей) и описание их свойств: убывание или возрастание, направленность ветвей, выпуклость, непрерывность, ограниченность сверху или снизу.
реферат, добавлен 22.01.2012Необходимые и достаточные условия существования максимума и минимума функции, выбор метода нахождения экстремумов и полное математическое обоснование. Задачи, связанные с нахождением условного экстремума. Геометрический смысл метода множителей Лагранжа.
курсовая работа, добавлен 18.08.2009Получение двусторонних оценок предела максимального среднего для периодической функции, зависящей от времени и основных переменных, и дифференциального включения с постоянной частью. Доказательство теоремы существования предела максимального среднего.
статья, добавлен 31.05.2013Изучение формулы бесконечно убывающей геометрической последовательности. Способы задания функции одной переменной. Геометрический смысл понятия "предел". Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз.
лекция, добавлен 26.01.2014Исследование понятий о гиперболических функциях, их основных свойствах и графики. Способ разложения этих функций в ряды Маклорена. Использование гиперболических функций при вычислении интегралов дифференциальных уравнений и в теории Относительности.
курсовая работа, добавлен 22.04.2011- 123. Высшая математика
Решение системы линейных уравнений с двумя неизвестными методом Крамера. Элементы аналитической геометрии. Пределы функции в точке и на бесконечности. Общая схема исследования функций и построения графиков. Дифференциальные уравнения первого порядка.
курс лекций, добавлен 30.04.2012 Основные недостатки существующих методов определения фильтрационных параметров. Метод модулирующих функций (М-метод), его сущность. Определение постоянных и переменных коэффициентов в дифференциальных уравнениях. Типичный график модулирующей функции.
статья, добавлен 10.07.2013Условия разложения функций в ряды Фурье по классическим ортогональным многочленам. Формулировка и доказательство аналогов леммы М.В. Федорюка. Вывод асимптотических формул для многочленов Чебышева-Эрмита, Якоби, Лежандра-Лагерра и их производных.
автореферат, добавлен 10.12.2013