Итерационные методы решения сингулярно возмущенных операторных уравнений Фредгольма в случае итерационного и асимптотического представления возмущения
Характеристика итерационных методов для сингулярно возмущенных операторных уравнений Фредгольма. Сущность и задачи нетривиального решения. Процесс получения асимптотического разложения. Описание рекуррентных равенств и их порядок использования.
Подобные документы
Методы решения нелинейных и дифференциальных уравнений и интерполяции функций. Численные методы решения некоторых математических и инженерных задач, программное обеспечение, их реализующее. Использование среды математического моделирования Matlab.
курсовая работа, добавлен 09.02.2019Методы решения систем линейных уравнений: Гаусса (последовательного исключения), Крамера, матричный метод. Классификация систем линейных уравнений по числу уравнений, неизвестных. Свойства определителей. Система ступенчатого вида с единственным решением.
контрольная работа, добавлен 23.04.2011Классификация СЛАУ (систем линейных алгебраических уравнений). Метод Гаусса решения СЛАУ. Анализ СЛАУ приведённого вида и описание общего решения. Решение матричных уравнений, отыскание обратной матрицы методом Гаусса. Составление блочной матрицы.
курс лекций, добавлен 19.09.2015Попытки нахождения формулы простых чисел для решения задач, представленных в Википедии. Изучение алгоритма решения Диофантовых уравнений (АРДУ). Возможность получения системы из трёх параметрических уравнений из базового уравнения с тремя неизвестными.
статья, добавлен 30.03.2017Прямая и обратная задачи решения системы линейных алгебраических уравнений. Использование результата для синтеза линейных систем при известных воздействиях на них и их реакциях на эти воздействия. Алгоритмы решения многокритериальной задачи оптимизации.
статья, добавлен 14.07.2016Ознакомление с основными методами решения нелинейных уравнений. Исследование и характеристика специальных способов решения определенных интегралов: правых прямоугольников и трапеций. Рассмотрение и анализ особенностей методов Эйлера и Рунге-Кутта.
контрольная работа, добавлен 08.11.2015Основополагающее значение задачи интерполяции. Основные методы решения задач численного дифференцирования, интегрирования, решения дифференциальных и интегральных уравнений. Классификация методов приближения. Критерии качества оценки погрешности.
курсовая работа, добавлен 20.01.2013Методика вычисления вектора частного решения неоднородной системы дифференциальных уравнений при помощи представления матрицы Коши под знаком интеграла в виде ряда. Алгоритм расчета линейных алгебраических уравнений в объединенном матричном виде.
статья, добавлен 26.06.2016Уравнения Фредгольма 1-го и 2-го рода. Конечные и бесконечные пределы интегрирования. Однородное интегральное уравнение Вольтера. Понятие метрического пространства. Принцип сжатых отображений. Теорема Банаха и решение интегральных уравнений 2-го рода.
курсовая работа, добавлен 22.04.2011Составление математической модели природных явлений. История возникновения, основные понятия и свойства логарифмов. Стандартные и нестандартные способы решения логарифмических уравнений и неравенств. Метод потенцирования, таблицы антилогарифмов Непера.
реферат, добавлен 15.10.2021Сущность обыкновенных дифференциальных уравнений, описание их общего вида и основные правила решения. Понятие условия Коши, его применение. Роль дифференциальных уравнений в решении прикладных задач. Порядок нахождения уравнения кривой, основные методы.
курсовая работа, добавлен 25.11.2013Разработка эффективных итерационных процессов решения систем сеточных уравнений, аппроксимирующих эллиптические краевые задачи. Принципы декомпозиции задачи на конечное число подзадач, упрощения этих подзадач с помощью введения фиктивного пространства.
автореферат, добавлен 02.03.2018Решение задачи Коши в случае переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Метод "переноса краевых условий" в произвольную точку интервала интегрирования. Начало счета методом прогонки.
научная работа, добавлен 01.02.2013Уравнение Пелля как одно из наиболее изученных диофантовых уравнений. Использование алгебраических чисел и диофантовых приближений для решения уравнений. Нелинейные рекуррентные формулы для решений уравнения Пелля. Рекуррентная цепочка равенств.
реферат, добавлен 22.11.2018Постановка задачи в операторной форме. Анализ её решения в виде линейной комбинации координатных функций. Изучение способов нахождения коэффициентов в каждом из рассматриваемых проекционных методов. Решение системы линейных алгебраических уравнений.
методичка, добавлен 13.09.2015Описание методов Зейделя, удобного для итерации, и Гаусса с выбором главного элемента по столбцу (схема частичного выбора) и по всей матрице (схема полного выбора) и их использование. Программы решений системы линейных уравнений данными методами.
контрольная работа, добавлен 09.11.2010История развития знаний и известные способы решения квадратных уравнений. Зависимость корней от знака дискриминанта. Решение квадратных уравнений с помощью циркуля, линейки. Свойства коэффициентов квадратного уравнения, теорема Виета и задача Диофанта.
презентация, добавлен 13.01.2017- 118. Задачи с параметрами
Постановка задачи с параметрами. Обобщение уравнений и неравенств с переменными. Решение уравнений и неравенств с одной переменной. Области допустимых значений параметров и область определения уравнения. Эффективные методы решения параметрических задач.
лекция, добавлен 01.09.2017 Рассмотрение современных учебников алгебры и начал математического анализа 9 класса. Рассмотрение основных видов системы уравнений и неравенств, содержащих параметр. Характеристика аналитического и графического методов решения задач с параметрами.
дипломная работа, добавлен 09.08.2018Особенность определения комплексных чисел. Характеристика программы решения систем линейных и нелинейных уравнений. Основная сущность определения конечного результата численными методами с заданной погрешностью. Нахождение корней кубических задач.
лабораторная работа, добавлен 12.04.2015Основные понятия в теории решения дробно-рациональных уравнений. Понятия "параметр" и "уравнение с параметром". Применение аналитического, графического метода и метода замены решения задач к решению дробно-рациональных уравнений, содержащих параметр.
курсовая работа, добавлен 29.05.2018Основные понятия теории обыкновенных дифференциальных уравнений первого порядка. Достаточные условия существования и единственности решения задачи Коши. Метод последовательных приближений функции. Численные способы математического решения задачи Коши.
дипломная работа, добавлен 06.03.2016Основные сведения о системах нелинейных уравнений. Понятие о линеаризованных уравнениях. Определение малой окрестности и выбор в ней начального приближения к решению. Методы простой итерации, Зейделя, Ньютона, наискорейшего спуска. Сходимость методов.
реферат, добавлен 14.12.2010Решение алгебраических, нелинейных и трансцендентных уравнений. Метод половинного деления, простых итераций, касательных и секущих. Численные методы вычисления определенных интегралов. Общая формулировка методов Рунге-Кутты. Строгие оценки погрешности.
творческая работа, добавлен 26.06.2011Описание математической модели объекта управления, с заданной структурной схемой, в векторно-матричной форме. Определение установившегося значения координат состояния объекта и подача управляющего и возмущающего воздействий в виде операторных уравнений.
практическая работа, добавлен 12.02.2018