Замена переменной и интегрирование по частям в определенном интеграле

Применение определенного интеграла к вычислению площадей плоских фигур. Геометрические приложения определенного интеграла. Понятие площади в полярных координатах. Расчет длины дуги кривой и ее построение. Основные правила вычисления объемов тел.

Подобные документы

  • Особенности вычисления двойного интеграла в прямоугольных декартовых координатах. Границы изменения переменной интеграции при постоянном значении второго аргумента. Правила определения тройного интеграла посредством ряда однократных интегрирований.

    лекция, добавлен 13.12.2015

  • Задача численного интегрирования функций, квадратурные формулы вычисления однократного интеграла. Выявление погрешностей используемых значений и функций, разработка вычислительного алгоритма, расчет конкретного интеграла по формуле правых прямоугольников.

    контрольная работа, добавлен 14.05.2012

  • Использование метода неопределенных коэффициентов для нахождения значений. Решение задачи, приводящей к понятию определенного интеграла. Определенный интеграл как предел интегральной суммы. Рассмотрение способов вычисления определенного интеграла.

    контрольная работа, добавлен 09.04.2018

  • Определение первообразной функции. Методы нахождения неопределенных интегралов: приведение к табличному виду и метод замены переменной, интегрирование по частям. Определённый интеграл, его применение для вычисления площадей фигур и работы переменной силы.

    контрольная работа, добавлен 05.04.2021

  • Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.

    курсовая работа, добавлен 16.05.2019

  • Понятие определенного интеграла, применение формулы Ньютона-Лейбница при его вычислении. Использование метода замены переменной. Определение пределов интегрирования, правила перестановки. Свойства аддитивности и линейности. Классы интегрируемых функций.

    лекция, добавлен 03.05.2016

  • Вычисление площади фигуры с помощью двойного интеграла в полярных координатах. Расчет объема тела с помощью тройного интеграла. Исследование сходимости числового ряда. Разложение функции f(x) в ряд Фурье. Общее и частное решение дифференциального уравнени

    контрольная работа, добавлен 22.01.2012

  • Свойства и методы вычисления Эйлерова интеграла первого рода, его функции. Особенности вычисления Эйлерова интеграла второго рода. Применение правила Лейбница. Особенности вычисления интеграла Раабе. Использование метода математической индукции.

    контрольная работа, добавлен 03.06.2012

  • Механизм вычисления неопределенного интеграла. Расчет площади фигуры, ограниченной заданными линиями. Доказательство расходимости несобственного интеграла. Определение экстремума функции и криволинейного интеграла. Решение дифференциального уравнения.

    контрольная работа, добавлен 25.09.2017

  • Предел последовательности и функции, бесконечно малые и большие величины, а также их сравнение. Дифференциальное и интегральное исчисление функции одной переменной. Геометрические приложения определенного интеграла. Производная и дифференциал функции.

    учебное пособие, добавлен 20.08.2017

  • Решение прикладных задач в области геометрии, механики и физики с использованием определённого интеграла. Вычисление площади криволинейной трапеции. Определение объёма тела, полученного вращением плоской фигуры вокруг оси. Нахождение длины дуги кривой.

    контрольная работа, добавлен 09.05.2021

  • Равномерное стремление к предельной функции. Дифференцирование под знаком интеграла. Случай, когда пределы интеграла зависят от параметра. Применение правила Лейбница к вычислению производной по параметру интеграла. Исследование функции на непрерывность.

    контрольная работа, добавлен 13.10.2013

  • Введение, математическое обоснование и анализ задачи. Методы вычисления определенного интеграла: метод трапеций, метод средних прямоугольников. Составление алгоритма работы программы integral.pas. Результат работы написанной и откомпилированной программы.

    контрольная работа, добавлен 30.10.2010

  • Определённый интеграл - одно из основных понятий математического анализа. Первообразная, формула Ньютона-Лейбница. Сущность понятия, свойства определенного интеграла. Скорость прямолинейного движения тела. Примеры решения задач с определенным интегралом.

    презентация, добавлен 20.01.2022

  • Векторное уравнение прямой линии и плоскости. Формулы и правила для вычисления частных производных для вектор-функций. Необходимое и достаточное условие непрерывности вектор-функции. Понятие определенного интеграла, параметрические уравнения кривой.

    лекция, добавлен 01.09.2017

  • Характеристика определенного интеграла как аддитивного монотонного функционала, заданного на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая – область в множестве задания этой функции. Примеры решения задач.

    реферат, добавлен 25.05.2016

  • Свойства неопределённых интегралов. Интегрирование по частям. Понятие рациональной дроби. Интегрирование некоторых классов тригонометрических функций. Нахождение площади плоской фигуры. Существование определённого интеграла. Дифференциальные уравнения.

    контрольная работа, добавлен 30.01.2012

  • Использование интегралов Френеля при вычислении интенсивности электромагнитного поля в среде, где свет огибает непрозрачные объекты. Определение интеграла, геометрический смысл определенного интеграла. Применение интеграла в строительстве и архитектуре.

    реферат, добавлен 21.03.2023

  • Определение и условия существования определенного интеграла. Проведение исследования основных понятий и предложений теории пределов. Характеристика формулы Ньютона-Лейбница. Выражение остаточного члена теоремы Тейлора с помощью определенной величины.

    курсовая работа, добавлен 17.12.2017

  • Приближенное решение определенного интеграла от непрерывной функции, расчет погрешностей. Способы решения дифференциальных уравнений. Абсолютная и условная сходимость числовых и степенных рядов. Интервал, свойства и радиус сходимости степенного ряда.

    контрольная работа, добавлен 06.06.2015

  • Способы численного интегрирования функции одной переменной. Вычисление значения определенного интеграла методом правых прямоугольников. Деление криволинейной трапеции на конечное число частей. Определение площади ступенчатой фигуры. Построение блок-схемы.

    контрольная работа, добавлен 19.01.2020

  • Анализ способа вычисления двойных интегралов путем сведения их к повторному интегралу. Ограничение функции сверху и снизу двумя непрерывными кривыми в области d. Алгоритм исчисления двойного интеграла в прямоугольных координатах и замена его переменных.

    презентация, добавлен 17.09.2013

  • Выявление методов нахождения площадей плоских фигур в зависимости от заданных условий. Выделение типологии задач на нахождение площадей и обоснование применения метода решения к ним. Разработка задачи прикладного характера и выполнение их решения.

    курсовая работа, добавлен 19.09.2018

  • Понятие и свойства тройного интеграла, его использование в решении прикладных задач. Вычисление тройного интеграла в декартовых, сферических, цилиндрических координатах. Нахождение площадей, ограниченных кривыми, и объемов, ограниченных поверхностями.

    курсовая работа, добавлен 21.05.2012

  • Три метода приближённого интегрирования определённого интеграла: метод прямоугольников, метод трапеций и метод Симпсона. Определение интеграла и его геометрический смысл. Приближённые методы вычисления. Формула Симпсона (формула парабол), ее применение.

    курсовая работа, добавлен 14.06.2022

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.