Методи побудови функцій керованості та позиційних керувань
Побудова множини позиційних керувань, що розв'язують задачу синтезу для лінійного диференціального рівняння та нелінійного рівняння за першим наближенням у гільбертових просторах. Розв'язання задачі позиційного синтезу обмежених інерційних керувань.
Подобные документы
Пошук асимптотичних розв'язків лінійної сингулярно збуреної системи диференціальних рівнянь у випадку кратних коренів характеристичного рівняння за допомогою методу збуреного характеристичного рівняння. Побудова формальних розв’язків системи рівнянь.
статья, добавлен 04.02.2017Порядок розв’язання системи нормальних рівнянь за способом Гауса (повна та скорочена схема), Краков’янів, Коші та наближень. Приклади обчислення суми [pv^2] в параметричному способі. Необхідні контролі при розв’язанні системи нормальних рівнянь.
презентация, добавлен 21.03.2014Побудова та обґрунтування алгоритмів для розв’язання деяких класів оптимізаційних задач. Розробка алгоритму розв’язання сформульованої задачі групового вибору з розбиттям множини виборців на підгрупи. Рекомендації щодо вибору параметрів алгоритмів.
автореферат, добавлен 11.10.2011Дослідження властивостей апроксимативних характеристик слабких розв’язків інтегрального рівняння Фредгольма першого роду. Огляд основних аспектів інформаційного підходу до задач відновлення елементів операторних рівнянь в різних функціональних просторах.
автореферат, добавлен 12.07.2015Розв’язання задачі геометричного моделювання, унаочнення взаємного положення ланок в процесі коливань багатоланкових маятникових механічних систем. Застосування системи рівнянь Лагранжа другого роду, побудова множини фазових портретів коливальних систем.
автореферат, добавлен 23.08.2014Викладення класу крайових задач для лінійних рівнянь з екстремальною граничною умовою. Дослідження матричної задачі Рімана на дійсній осі та побудова розв’язків таких крайових задач. Розроблення і обґрунтування методів наближеного розв’язання рівнянь.
автореферат, добавлен 10.08.2014Системи рівнянь, основні граничні та початкові умови що описують малі потенціальні рухи рідини поблизу рівноважного стану в лінійному наближенні. Методи оптимально-диференціального формулювання еволюційної задачі. Узагальнений розв`язок задачі Коші.
статья, добавлен 30.10.2016Основні методи відображення формоутворюючих елементів простору – точок, прямих, площин, методи геометричного моделювання, а також складних фігур – багатогранників, кривих поверхонь. Методи розв’язання на графічних моделях метричних та позиційних задач.
учебное пособие, добавлен 07.07.2017Знаходження умов існування обмежених на всій осі розв’язків лінійних неоднорідних, слабко збурених та нелінійних диференціальних рівнянь в банаховому просторі та розробка алгоритмів побудови розв’язків таких задач. Теорія псевдообернених операторів.
автореферат, добавлен 26.08.2015Дослідження задач асимптотичної поведінки для великих значень параметра лінійно незалежної системи розв’язків сингулярного диференціального та квазідиференціального рівнянь. Вивчення асимптотики власних функцій сингулярного диференціального оператору.
автореферат, добавлен 02.08.2014Встановлення умов існування та єдиності розв'язку обернених задач для параболічного рівняння на знаходження старшого коефіцієнта, множника у вільному члені. Особливості розв'язку у випадку нелокальних та інтегральних крайових умов та умов перевизначення.
автореферат, добавлен 28.07.2014Характеристика методу функції Гріна для розв’язування диференціального рівняння. Ознайомлення з процесом реалізації програми для методу функції Гріна середовищі СКМ "Mathematica". Аналіз особливостей побудови функції при постійному значенні потенціалу.
контрольная работа, добавлен 17.03.2015Вивчення геометричного змісту похідної. Розгляд застосування похідної для розв’язання рівнянь і нерівностей. Описання методу наближеного знаходження кореня рівняння, методів хорд і дотичних. Розв’язування економічних задач за допомогою диференціювання.
дипломная работа, добавлен 29.01.2015Особливості дослідження умов існування обмежених на всій осі розв’язків слабко збурених лінійних та нелінійних систем звичайних диференціальних рівнянь, лінійна частина яких є нетеровий оператор. Розробка алгоритмів побудови розв'язків таких задач.
автореферат, добавлен 27.07.2014Нелінійна параболічна задача для рівняння парного порядку у циліндричній області. Операторні рівняння з оператором, які задовольняють умову. Топологічні характеристики відображення. Єдиність розв'язку досліджуваної задачі та його локальне існування.
автореферат, добавлен 20.04.2014Життя Діофанта та його внесок у математику. Розробка найпростіших методів діофантових рівнянь: повного перебору, виділення чистої частини. Теоретичні та практичні відомості про лінійні рівняння Діофанта. Розв'язання цікавих задач за допомогою рівнянь.
реферат, добавлен 13.02.2014Алгоритми розв’язування систем лінійних рівнянь з невідомими та параметрами. Використання квадратних рівнянь з параметрами при розв’язуванні фізичних задач. Алгебраїчні, ірраціональні, показникові, логарифмічні та тригонометричні рівняння з параметрами.
учебное пособие, добавлен 17.02.2022Побудова параметричної та рекурсивної модифікації методу Гаусса-Ньютона. Розробка нового підходу до розв’язування систем нелінійних рівнянь та нерівностей, який базується на зведенні вихідної задачі до задачі найменших квадратів. Оцінка похибки процесів.
автореферат, добавлен 27.04.2014Показова і логарифмічна функція. Перетворення логарифмічних виразів. Способи розв’язання логарифмічних і показових рівнянь. Показово-степеневі рівняння та системи показових і логарифмічних рівнянь. Основні властивості показових функцій та логарифмів.
лекция, добавлен 26.01.2014Розширення методів та побудова розв’язків контактних задач для пружного півпростору, просторових та плоских задач для пружних тіл, що містять порожнини, включення та розрізи, на основі теореми додавання розв’язків рівняння Лапласа та системи рівнянь Ламе.
автореферат, добавлен 10.01.2014Розв’язування систем лінійних рівнянь з довільним числом невідомих. Методи розв'язування систем лінійних рівнянь: точні й ітераційні. Система двох рівнянь з двома невідомими. Розв’язання систем лінійних рівнянь методом Гауса, Крамера, матричним методом.
курсовая работа, добавлен 23.04.2011Розробка алгебраїчних методів класичного групового аналізу диференціальних рівнянь. Конструктивний метод розв'язання цієї задачі з частинними похідними. Групова класифікація квазілінійного рівняння еволюційного типу в двовимірному просторі–часі.
автореферат, добавлен 13.07.2014Загальні відомості про алгебраїчні рівняння вищих порядків. Загальні відомості про алгебраїчні рівняння вищих порядків. Застосування теореми Безу та схеми Горнера при розв’язанні алгебраїчних рівнянь. Використання методу невизначених коефіцієнтів при вирі
курсовая работа, добавлен 30.11.2015Умови існування та єдиності розв'язку нелокальної крайової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду. Визначення локалізації розв'язків у множині функцій з обмеженим ростом та дослідження питання про їх єдиність.
автореферат, добавлен 27.08.2015- 100. Чисельні методи
Прямі і ітераційні методи розв’язування систем лінійних алгебраїчних рівнянь. Методи визначення коренів нелінійних рівнянь. Знаходження власних чисел і власних векторів матриць. Кубічна сплайн-інтерполяція, чисельне розв’язування задачі Коші для рівняння.
учебное пособие, добавлен 27.08.2017