Методи побудови функцій керованості та позиційних керувань

Побудова множини позиційних керувань, що розв'язують задачу синтезу для лінійного диференціального рівняння та нелінійного рівняння за першим наближенням у гільбертових просторах. Розв'язання задачі позиційного синтезу обмежених інерційних керувань.

Подобные документы

  • Пошук асимптотичних розв'язків лінійної сингулярно збуреної системи диференціальних рівнянь у випадку кратних коренів характеристичного рівняння за допомогою методу збуреного характеристичного рівняння. Побудова формальних розв’язків системи рівнянь.

    статья, добавлен 04.02.2017

  • Порядок розв’язання системи нормальних рівнянь за способом Гауса (повна та скорочена схема), Краков’янів, Коші та наближень. Приклади обчислення суми [pv^2] в параметричному способі. Необхідні контролі при розв’язанні системи нормальних рівнянь.

    презентация, добавлен 21.03.2014

  • Побудова та обґрунтування алгоритмів для розв’язання деяких класів оптимізаційних задач. Розробка алгоритму розв’язання сформульованої задачі групового вибору з розбиттям множини виборців на підгрупи. Рекомендації щодо вибору параметрів алгоритмів.

    автореферат, добавлен 11.10.2011

  • Дослідження властивостей апроксимативних характеристик слабких розв’язків інтегрального рівняння Фредгольма першого роду. Огляд основних аспектів інформаційного підходу до задач відновлення елементів операторних рівнянь в різних функціональних просторах.

    автореферат, добавлен 12.07.2015

  • Розв’язання задачі геометричного моделювання, унаочнення взаємного положення ланок в процесі коливань багатоланкових маятникових механічних систем. Застосування системи рівнянь Лагранжа другого роду, побудова множини фазових портретів коливальних систем.

    автореферат, добавлен 23.08.2014

  • Викладення класу крайових задач для лінійних рівнянь з екстремальною граничною умовою. Дослідження матричної задачі Рімана на дійсній осі та побудова розв’язків таких крайових задач. Розроблення і обґрунтування методів наближеного розв’язання рівнянь.

    автореферат, добавлен 10.08.2014

  • Системи рівнянь, основні граничні та початкові умови що описують малі потенціальні рухи рідини поблизу рівноважного стану в лінійному наближенні. Методи оптимально-диференціального формулювання еволюційної задачі. Узагальнений розв`язок задачі Коші.

    статья, добавлен 30.10.2016

  • Основні методи відображення формоутворюючих елементів простору – точок, прямих, площин, методи геометричного моделювання, а також складних фігур – багатогранників, кривих поверхонь. Методи розв’язання на графічних моделях метричних та позиційних задач.

    учебное пособие, добавлен 07.07.2017

  • Знаходження умов існування обмежених на всій осі розв’язків лінійних неоднорідних, слабко збурених та нелінійних диференціальних рівнянь в банаховому просторі та розробка алгоритмів побудови розв’язків таких задач. Теорія псевдообернених операторів.

    автореферат, добавлен 26.08.2015

  • Дослідження задач асимптотичної поведінки для великих значень параметра лінійно незалежної системи розв’язків сингулярного диференціального та квазідиференціального рівнянь. Вивчення асимптотики власних функцій сингулярного диференціального оператору.

    автореферат, добавлен 02.08.2014

  • Встановлення умов існування та єдиності розв'язку обернених задач для параболічного рівняння на знаходження старшого коефіцієнта, множника у вільному члені. Особливості розв'язку у випадку нелокальних та інтегральних крайових умов та умов перевизначення.

    автореферат, добавлен 28.07.2014

  • Характеристика методу функції Гріна для розв’язування диференціального рівняння. Ознайомлення з процесом реалізації програми для методу функції Гріна середовищі СКМ "Mathematica". Аналіз особливостей побудови функції при постійному значенні потенціалу.

    контрольная работа, добавлен 17.03.2015

  • Вивчення геометричного змісту похідної. Розгляд застосування похідної для розв’язання рівнянь і нерівностей. Описання методу наближеного знаходження кореня рівняння, методів хорд і дотичних. Розв’язування економічних задач за допомогою диференціювання.

    дипломная работа, добавлен 29.01.2015

  • Особливості дослідження умов існування обмежених на всій осі розв’язків слабко збурених лінійних та нелінійних систем звичайних диференціальних рівнянь, лінійна частина яких є нетеровий оператор. Розробка алгоритмів побудови розв'язків таких задач.

    автореферат, добавлен 27.07.2014

  • Нелінійна параболічна задача для рівняння парного порядку у циліндричній області. Операторні рівняння з оператором, які задовольняють умову. Топологічні характеристики відображення. Єдиність розв'язку досліджуваної задачі та його локальне існування.

    автореферат, добавлен 20.04.2014

  • Життя Діофанта та його внесок у математику. Розробка найпростіших методів діофантових рівнянь: повного перебору, виділення чистої частини. Теоретичні та практичні відомості про лінійні рівняння Діофанта. Розв'язання цікавих задач за допомогою рівнянь.

    реферат, добавлен 13.02.2014

  • Алгоритми розв’язування систем лінійних рівнянь з невідомими та параметрами. Використання квадратних рівнянь з параметрами при розв’язуванні фізичних задач. Алгебраїчні, ірраціональні, показникові, логарифмічні та тригонометричні рівняння з параметрами.

    учебное пособие, добавлен 17.02.2022

  • Побудова параметричної та рекурсивної модифікації методу Гаусса-Ньютона. Розробка нового підходу до розв’язування систем нелінійних рівнянь та нерівностей, який базується на зведенні вихідної задачі до задачі найменших квадратів. Оцінка похибки процесів.

    автореферат, добавлен 27.04.2014

  • Показова і логарифмічна функція. Перетворення логарифмічних виразів. Способи розв’язання логарифмічних і показових рівнянь. Показово-степеневі рівняння та системи показових і логарифмічних рівнянь. Основні властивості показових функцій та логарифмів.

    лекция, добавлен 26.01.2014

  • Розширення методів та побудова розв’язків контактних задач для пружного півпростору, просторових та плоских задач для пружних тіл, що містять порожнини, включення та розрізи, на основі теореми додавання розв’язків рівняння Лапласа та системи рівнянь Ламе.

    автореферат, добавлен 10.01.2014

  • Розв’язування систем лінійних рівнянь з довільним числом невідомих. Методи розв'язування систем лінійних рівнянь: точні й ітераційні. Система двох рівнянь з двома невідомими. Розв’язання систем лінійних рівнянь методом Гауса, Крамера, матричним методом.

    курсовая работа, добавлен 23.04.2011

  • Розробка алгебраїчних методів класичного групового аналізу диференціальних рівнянь. Конструктивний метод розв'язання цієї задачі з частинними похідними. Групова класифікація квазілінійного рівняння еволюційного типу в двовимірному просторі–часі.

    автореферат, добавлен 13.07.2014

  • Загальні відомості про алгебраїчні рівняння вищих порядків. Загальні відомості про алгебраїчні рівняння вищих порядків. Застосування теореми Безу та схеми Горнера при розв’язанні алгебраїчних рівнянь. Використання методу невизначених коефіцієнтів при вирі

    курсовая работа, добавлен 30.11.2015

  • Умови існування та єдиності розв'язку нелокальної крайової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду. Визначення локалізації розв'язків у множині функцій з обмеженим ростом та дослідження питання про їх єдиність.

    автореферат, добавлен 27.08.2015

  • Прямі і ітераційні методи розв’язування систем лінійних алгебраїчних рівнянь. Методи визначення коренів нелінійних рівнянь. Знаходження власних чисел і власних векторів матриць. Кубічна сплайн-інтерполяція, чисельне розв’язування задачі Коші для рівняння.

    учебное пособие, добавлен 27.08.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.