Основы теории графов
Ориентированные графы как структуры с конечным множеством вершин и ребер. Симметричное отношение смежности для неориентированного графа. Матрица смежности. Проверка присутствия ребра при помощи матрицы смежности. Отношение эквивалентности на вершинах.
Подобные документы
Ориентированные и неориентированные графы, петля, кратные дуги и рёбра. Степень вершины, полустепень исхода и захода графа. Существование цикла и контура. Способы представления графов: матрица смежности, инцидентности, модифицированный список смежности.
презентация, добавлен 26.07.2015История возникновения теории графов. Основные понятия: ориентированный граф, петля, кратные ребра, гипердуги, подграфы. Способы представления графов в компьютере. Матрица смежности, инцидентность вершин и ребер, массивы дуг. Обзор задач теории графов.
курсовая работа, добавлен 14.06.2011Понятия графа в математической теории как совокупности непустого множества вершин и множества пар вершин. Направленность графов, ограничения на количество связей и дополнительные данные о вершинах или ребрах. Способы задания графов, матрица смежности.
контрольная работа, добавлен 29.08.2010Основные понятия о теории графа. Матрица смежности неориентированного графа с вершинами. Матрица инциденций неориентированного графа с вершинами и ребрами. Линейный однонаправленный список для задания множества вершин. Фундаментальные циклы графа.
реферат, добавлен 27.03.2011Основные понятия теории множеств и теории графов. Графические диаграммы Венна. Матрица инцидентности ориентированного и неориентированного графа. Анализ матрицы смежности графа. Особенности частей, сурграфов и подграфов, маршрутов, цепей и циклов.
методичка, добавлен 15.10.2016Преобразование матрицы смежности ориентированного графа в матрицу инцидентности. Бьерн Страуструп как разработчик языка Си++. Матрица Инцидентности как отношение между ребром и его концевыми вершинами. Листинг программы, руководство пользователя.
курсовая работа, добавлен 30.03.2015Применение теории графов в современной вычислительной технике и кибернетике. Матрица смежности и инциденций вершин. Задание множества вершин, достижимых из вершины v, с использованием линейного однонаправленного списка. Фундаментальные циклы графа.
контрольная работа, добавлен 24.04.2011Краткий перечень основных понятий теории графов как раздела дискретной математики. Понятия смежности и инцидентности. Матрицы смежности и инцидентности, достижимости и связности. Маршруты и пути. Применение методов теории графов в прикладных задачах.
методичка, добавлен 24.03.2015Определение значения и порядок построения матриц смежности вершин с помощью матриц смежности вершин исходных графов. Расчет максимального потока и разреза с минимальной пропускной способностью в транспортной сети. Доказательство равномощности множеств.
контрольная работа, добавлен 27.03.2012История возникновения теории графов и способы их представления в информатике. Определение понятия матрицы смежности и инцидентности. Маршрут как последовательность ребер, в которых каждые два соседних ребра имеют общую вершину. Гамильтонов и Эйлеров цикл.
презентация, добавлен 28.02.2012Изучение ориентированного конечного графа. Характеристика инцидентности ребра и вершины. Основы построения матриц смежности и инцидентности. Рассмотрение примеров объединения графов. Анализ условий и компонентов связности. Изучение эйлеровых цепей.
презентация, добавлен 31.10.2013Понятие и сущность изоморфизма графов, их машинное представление. Характеристика и специфика матрицы смежности и инцинденций, специфика массива ребер. Пошаговая проверка на изоморфизм двух графов вручную. Реализация программы на языке программирования.
курсовая работа, добавлен 30.03.2015Глобальные структуры алгебраических байесовских сетей. Описание схемы алгоритма равновероятного синтеза минимального графа смежности. Понятие и сущность алгебраических байесовских сетей. Выявление основных возможностей реализации минимальных графов.
статья, добавлен 15.01.2019Ознакомление с формульным выражением симметричной квадратной матрицы. Определение свойств матриц смежности и инцидентности. Расчеты ориентированного мультиграфа при нулевой, либо линейной комбинации строк. Обзор теоремы ориентированного псевдографа.
лекция, добавлен 18.10.2013Математическое описание графа множествами вершин, списками смежности и матрицей инцидентности. Суть сетки весов соответствующих неориентированным конечностям. Анализ путей отбрасывания истоков и стоков. Поиск остевого дерева алгоритмом Прима-Краскала.
курсовая работа, добавлен 04.02.2015Рассмотрение элементов теории графов. Характеристика множеств и операций над ними. Основные законы комбинаторики. Основы построения матрицы смежности. Геометрическая реализация графов. Исследование ключевых особенностей логики высказываний и операций.
курс лекций, добавлен 01.04.2016- 17. Теория графов
Сущность теории графов – как области дискретной математики, особенностью которой является геометрический подход к изучению объектов. Основные термины и теоремы теории графов, способы и методы их задания: геометрический, матрица смежности и инцидентности.
контрольная работа, добавлен 03.04.2013 - 18. Теория графов
Построение графа отношения "x+y<=7" на множестве М={1,2,3,4,5,6}. Матрица сложности (вершин), инциденций (ребер) и расстояний. Вектор удаленности, центр и периферийные вершины. Радиус и диаметр графа. Числа внутренней и внешней устойчивости графа.
задача, добавлен 11.09.2012 Формулировка и решение задачи об оптимальном размещении компонентов на печатной плате или отдельных элементов в корпусе устройства. Основные понятия теории графов. Использование алгоритма Форда-Бэллмана для решения задачи. Построение матрицы смежности.
курсовая работа, добавлен 20.01.2016Характеристика основных понятий матричных способов задания графов. Анализ определения замкнутого и незамкнутого маршрутов. Использование алгоритма Форда–Бэллмана. Особенность поиска минимального пути. Построение матрицы смежности и инцидентности.
курсовая работа, добавлен 14.01.2016Характеристика ориентированного графа, путь и длина пути в графе. Элементарный путь и контур. Полустепень исхода и полустепень захода вершины. Матрица смежности графа и матрица инциденций. Двухполюсная транспортная сеть и условия ее существования.
контрольная работа, добавлен 15.12.2010Алгоритм Тэрри поиска маршрута в связном графе, соединяющем вершины. Выделение простой цепи из полученного пути. Поиск оптимального пути с наименьшим числом дуг или ребер. Прообраз множества вершин, матрица смежности. Определение расстояния в графе.
лекция, добавлен 18.10.2013Техническое проектирование радиоэлектронных средств. Решение задачи компоновки модулей в определённые конструктивные единицы. Разрезание матрицы смежности, соответствующее разрезанию графа на три куска. Недостатки матричного метода разрезания графа.
статья, добавлен 25.10.2018Изучение основных матриц графов и их теорем. Описание порядка построения матрицы по графическому рисунку графа и графов по заданной матрице. Характеристика метрических характеристик графов, связанных с матрицами. Нахождение путей графов по матрице.
курсовая работа, добавлен 13.09.2012Основные определения теории графов. Матрицы смежности и инцидентности. Вершинная связность и реберная вязность. Теорема Менгера и выделение k непересекающихся остовных деревьев 2k–реберно связном графе. Построение k непересекающихся остовных деревьев.
дипломная работа, добавлен 26.02.2020