Интегральная формула для систем уравнений эллиптического типа в неограниченной области
Рассмотрение интегральных формул для уравнений эллиптического типа первого порядка с постоянными коэффициентами, факторизуемыми оператором Гельмгольца в неограниченной области. Доказательство справедливости интегральной формулы в неограниченной области.
Подобные документы
Ознакомление с кинематической интерпретацией дифференциальных уравнений. Способы решения линейных и квадратных равенств. Показательная функция дифференцирования. Исчисление задач с постоянными коэффициентами. Содержание теории Пуанкаре–Бендиксона.
учебное пособие, добавлен 23.12.2014Общий метод нахождения асимптотических собственных значений вблизи границ спектральных кластеров. Асимптотические решения уравнений типа Хартри с гладкими потенциалами самодействия и с сингулярными потенциалами самодействия. Теория эйри-полярона.
дипломная работа, добавлен 28.12.2016Квадратурная формула Ньютона-Котеса, ее характеристика и частные случаи. Анализ квадратурной формулы Гаусса. Приближенное вычисление несобственных интегралов. Кубатурные формулы типа Симпсона как метод приближенного вычисления двойного интеграла.
лекция, добавлен 26.09.2017Характеристика и особенности численного дифференцирования. Рассмотрение исправленного метода Эйлера, блок-схема алгоритма. Применение численного дифференцирования, Решение обыкновенных дифференциальных уравнений первого порядка с начальными данными.
курсовая работа, добавлен 10.06.2021Сущность и структура дифференциальных уравнений, требования к ним и значение в математике. Обыкновенные уравнения первого и высшего порядка, их отличительные характеристики и свойства. Дифференциальные уравнения в частных производных: общее описание.
контрольная работа, добавлен 12.04.2014Аналитическое определение профилей зубьев эллиптического колеса. Увеличение эксцентриситета эллиптического колеса эволюты левых и правых профилей. Использование общего способа дифференциальной геометрии для определения эволют профильных кривых колеса.
статья, добавлен 30.07.2018Решение нелинейных уравнений методом касательных. Интерполирование функции и полиномы Ньютона. Численное интегрирование, метод левых, правых и средних прямоугольников. Приближенное решение обыкновенных дифференциальных уравнений первого порядка.
курсовая работа, добавлен 17.04.2014Использование матричных уравнений в теории устойчивости движения, при решении дифференциальных уравнений Риккати и матриц Сильвестра. Формула неоднородного уравнения. Существенное отличие частного решения от конструкции в виде псевдообратного оператора.
статья, добавлен 30.10.2016Различные способы решения систем линейных уравнений для применения их на практике. Основные понятия матрицы и действия над ними. Метод Гаусса решения общей системы линейных уравнений. Правило Крамера, система n линейных уравнений с n неизвестными.
реферат, добавлен 06.03.2010Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка. Метод Булирша-Штера с использованием рациональной экстраполяции для системы уравнений. Описание алгоритма главной программы, блок-схема. Подбор программного обеспечения.
контрольная работа, добавлен 19.02.2014Свойства систем дифференциальных уравнений. Исследование предельного множества траекторий. Траектории линейных систем на плоскости. Линейные однородные системы с периодическими коэффициентам. Устойчивость решений систем дифференциальных уравнений.
курсовая работа, добавлен 26.11.2014Определение псевдопараболических уравнений по характеру свойств решений. Решение задачи сопряжения для псевдопараболических уравнений третьего порядка с использованием тождества Лагранжа, функций Грина и Римана. Определение условий разрешимости уравнения.
статья, добавлен 18.05.2016Обыкновенное дифференциальное уравнение первого порядка, его решение. Геометрическое истолкование дифференциального уравнения. Теорема существования и единственности. Характер поведения интегральных линий системы уравнений в окрестности особой точки.
курс лекций, добавлен 28.10.2012Решение задачи Коши для дифференциальных уравнений методом Милна. Использование метода для систем уравнений первого порядка или приведенных к таким. Оценка устойчивости метода и числа шагов. Практическая сторона использования. Решение 30 примеров.
курсовая работа, добавлен 09.06.2014Матрицы и действия над ними (обратная матрица). Системы линейных уравнений. Система n линейных уравнений с n неизвестными. Правило Крамера. Метод Гаусса решения общей системы линейных уравнений. Критерий совместности общей системы линейных уравнений
реферат, добавлен 26.02.2010Дифференциальные уравнения первого порядка: уравнения в частных производный и обыкновенные дифференциальные уравнения. Понятие интегральной кривой. Связь между геометрическая интерпретация уравнения и его решения. Теорема существования и единственности.
курсовая работа, добавлен 11.04.2014Основные понятия теории систем дифференциальных уравнений на примере нормальных систем. Класс нормальных линейных однородных систем данных уравнений. Понятие фундаментальной системы решений. Задача Коша, метод Эйлера и исключения неизвестных функций.
лекция, добавлен 29.09.2014Введение дополнительных переменных. Разделение области возможных значений переменных и параметров. Вспомогательные преобразования, приводящие к упрощению выражений. Применение классических формул. Несколько примеров решения задач описанными методами.
контрольная работа, добавлен 08.02.2011Пифагоровы тройки, их количество. Идентификация простых и составных чисел. Разрешимость Диофантовых уравнений с переменными под идентификацию простого и составного числа. Формулы вертикальных рядов. Составление уравнений из тождественных составляющих.
статья, добавлен 27.03.2016Математическая формула для подъемной силы, действующей на единицу длины крыла самолета. Специфические особенности применения системы обыкновенных дифференциальных уравнений первого порядка для определения траектории движения летательных аппаратов.
статья, добавлен 17.11.2021- 121. Задачи с параметрами
Постановка задачи с параметрами. Обобщение уравнений и неравенств с переменными. Решение уравнений и неравенств с одной переменной. Области допустимых значений параметров и область определения уравнения. Эффективные методы решения параметрических задач.
лекция, добавлен 01.09.2017 Изучение краевых задач для обыкновенных дифференциальных уравнений и для уравнений с частными производными. Алгоритмы методов численного решения систем нелинейных уравнений, согласно которым произведен поиск корней типовой для прикладных задач системы.
статья, добавлен 07.08.2020Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову. Их геометрическая интерпретация. Устойчивость решения автономной системы и линейных дифференциальных уравнений с постоянными коэффициентами. Простейшие типы точек покоя.
контрольная работа, добавлен 22.01.2016Изучение эволюции уравнений и их решений. Теории вычислений Древнего Египта, способы решения квадратных уравнений в Древнем Вавилоне и арабских странах. Кубические уравнения Греции, формула Тартальи–Кардано. Методы решения уравнений высоких степеней.
курсовая работа, добавлен 22.05.2010Доказательство формулы для определителя Грама и Леммы Накаямы. Решение системы линейных уравнений с ненулевым определителем основной матрицы. Ее запись в матричном виде. Реализация метода Крамера со сложностью, сравнимой со сложностью метода Гаусса.
доклад, добавлен 11.12.2017