Аксиомы стереометрии

Раздел геометрии, в котором изучаются свойства фигур в пространстве. Основные фигуры: плоскость, прямая, точка. Геометрические тела: куб, тетраэдр, параллелепипед. Исходное положение научной теории, принимаемое без доказательства, следствия из аксиом.

Подобные документы

  • Введение геометрического объекта в систему отсчета. Использование метода секущих плоскостей и вспомогательных сфер. Построение проекции объекта, стоящего на плоскости. Геометрические свойства равнобедренного треугольника. Натуральная величина высоты.

    учебное пособие, добавлен 27.08.2017

  • Поверхности и линии в пространстве. Рассмотрение общего уравнения плоскости. Координаты точки в системе координат. Изучение правил взаимного расположения двух прямых в пространстве. Уравнение плоскости по трем точкам. Понятие вектор в геометрии.

    презентация, добавлен 26.01.2014

  • Взаимное расположение точек и прямых в пространстве и на плоскости. Уравнение прямой по точке и вектору нормали, заданной угловым коэффициентом. Параметрические и канонические уравнения прямой в пространстве. Уравнение прямой, проходящей через две точки.

    курсовая работа, добавлен 08.12.2015

  • Проецирование прямой на плоскость. Прямые частного положения. Использование конкурирующих точек. Определение видимости ребер пирамиды, натуральной величины отрезка и фигуры. Способы преобразования чертежа. Сущность метода плоскопараллельного переноса.

    презентация, добавлен 09.03.2015

  • Определение многогранников, их примеры в архитектуре (египетская пирамида), искусстве, животном мире. Их типы: тетраэдр, гексаэдр, октаэдр, икосаэдр, додекаэдр. Количество граней, ребер и вершин в данных фигурах. История правильных многогранников.

    презентация, добавлен 09.04.2014

  • Условие принадлежности точки поверхности геометрической фигуры. Проецирующее положение геометрических фигур. Построение линии пересечения геометрических фигур. Перспектива прямой линии и параллельных прямых. Рассмотрение проекции с числовыми отметками.

    учебное пособие, добавлен 13.09.2017

  • Описание общих аксиом конструктивной геометрии и математических инструментов. Правила формулировки задач на построение и методика их решения (методы геометрических мест и преобразований, алгебраический метод). Построения циркулем и иными инструментами.

    курсовая работа, добавлен 24.01.2017

  • Особенности решения задач по начертательной геометрии. Взаимное положение точек, линий и плоскостей, способы их преобразований и построение проекций. Определение истинных величин и октант. Построение сечения многогранника плоскостью и его развертка.

    учебное пособие, добавлен 23.11.2011

  • Изучение теории римановых пространств. Отождествление противоположных точек сферы в геометрии Римана. Исследование проективных плоскостей и пространства. Характеристика принципа двойственности, который прибавляет изящную симметрию во многие конструкции.

    реферат, добавлен 10.09.2012

  • Векторы в пространстве. Деление отрезка в данном отношении. Площадь, объем и ориентация. Плоскости и прямые в пространстве. Прямоугольные системы координат и ортогональные матрицы. Эллипс, гипербола и парабола. Общая теория кривых второго порядка.

    курс лекций, добавлен 02.05.2014

  • Аксиомы стереометрии, их сущность и содержание. Построение сечения тетраэдра и сечения через точки. Основные понятия и теоремы стереометрии. Построение сечения тетраэдра плоскостью, проходящей через возможные точки. Примеры задач для контрольной работы.

    презентация, добавлен 13.04.2012

  • Определение содержания и исследование истории доказательств аксиомы параллельности Евклида, или пятого постулата, как одной из аксиом, лежащих в основании классической планиметрии. Разработка Николаем Ивановичем Лобачевским доказательства V постулата.

    презентация, добавлен 13.04.2012

  • История применения алгебры в геометрии. Основные уравнения конических сечений. Анализ изложения аналитической геометрии у Декарта и Ферма. Кинематическое образование линий. Геометрия как раздел математики, изучающий пространственные отношения и формы.

    контрольная работа, добавлен 20.10.2012

  • Построение цепочки силлогизмов для создания доказательства, утверждающего истинность теоремы. Классификация теорем по логической структуре, характеристика необходимых и достаточных условий. Существующие системы аксиом, предъявляемые к ним требования.

    презентация, добавлен 15.02.2012

  • Индукция в геометрии и комбинаторике. Иррациональность значений тригонометрических функций. Квадратный трехчлен и фазовая плоскость. Комплексные числа и операции с ними. Треугольник Паскаля и его свойства. Пути и отображения комплексной плоскости.

    учебное пособие, добавлен 18.06.2015

  • Понятие термина "геометрия", история возникновения и развития. Геометрия Эйнштейна — Минковского. Роль геометрии в естествознании. Термин “площадь” и ее основные измерения. Старые меры площадей. Теоремы площадей фигур и способы решения задач по ним.

    реферат, добавлен 04.12.2008

  • Понятие тригонометрии как раздела математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Применение науки в древности для расчётов в астрономии, геодезии и архитектуре. Особенности ее возникновения и стимул для развития.

    реферат, добавлен 28.09.2014

  • Геометрическая интерпретация векторного произведения в зеркальном отражении. Главная особенность доказательств коммутативности сложения векторов на плоскости. Основные свойства скалярного отображения. Характеристика аксиомы параллельности Евклида.

    контрольная работа, добавлен 28.04.2016

  • Предмет начертательной геометрии. Методы центрального и параллельного проецирования. Точка, прямые и плоскости общего и частного положения на эпюре Монжа. Способы преобразования ортогональных проекций. Классификация поверхностей и многогранники.

    учебное пособие, добавлен 17.12.2014

  • Основные свойства треугольников. Признаки равенства треугольников. Основная аксиома стереометрии. Углы, проекции, многогранные углы. Функция, однозначная и многозначная функция. Область определения и область значений функции. Функции и их графики.

    лекция, добавлен 22.03.2010

  • Плоскость как поверхность или фигура, образованная кинематическим движением образующей по направляющей, представляющей собой прямую. Фиксированная произвольная декартова система координат. Условия параллельности и перпендикулярности нормальных векторов.

    презентация, добавлен 10.11.2014

  • Исторические вехи становления аксиоматического метода и его роль в развитии математического образования. Интерес к методам научного познания, к природе математических понятий и аксиом и логике доказательства. Дискуссии о дискурсивном и интуитивном знании.

    статья, добавлен 16.03.2019

  • Содержание аксиоматического метода построения научной теории: выделение основных понятий, формулировка аксиомы, вывод логическим путём теоремы и других определений. Разрыв между геометрией и арифметикой Евклида. Аксиома параллельности Лобачевского.

    реферат, добавлен 30.10.2010

  • Вклад Софьи Ковалевской в развитие математического анализа, механики и астрономии. Создание Лузиным дескриптивной теории функций. Роль Колмогорова в создании системы аксиом современной теории вероятностей. Создание аналитической геометрии П. Ферма.

    презентация, добавлен 05.10.2015

  • Принцип Дирихле и его применение. Элементы теории, определение и свойства сравнений. Вычеты по модулю, системы вычетов. Теоремы Эйлера и Ферма. Нахождение остатков от деления степеней. Применение движений плоскости к решению задач элементарной геометрии.

    разработка урока, добавлен 20.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.