Основы планиметрии и стереометрии
Понятие планиметрии (свойства фигур на плоскости) и стереометрии (свойства фигур в пространстве). Виды стереометрических тел: конус, призма, цилиндр, параллелепипед. Характеристика аксиом стереометрии, их доказательство. Способы задания плоскостей.
Подобные документы
Развитие у учащихся абстрактного мышления. Тема "Многогранники" в курсе школьной геометрии как центральный предмет стереометрии. Исторические сведения о правильных многогранниках, их проявление в природе. Греческая математика Платона, формула Эйлера.
реферат, добавлен 26.03.2010Разработка теории преобразований, обеспечивающей точность отображения объектов на плоскость. Способы задания гомотетии. Свойства аффинного преобразования. Применение в геометрии математических теорий подобия на плоскости при различных системах координат.
курсовая работа, добавлен 30.07.2017История исследования свойств призмы, пирамиды, цилиндра и конуса. Изучение конических сечений, их характерные свойства. Отличительные особенности усеченного конуса. Свойства конуса в самолетостроении как основной фигуры, образующей конструкцию фюзеляжа.
статья, добавлен 14.03.2019Определение содержания и исследование истории доказательств аксиомы параллельности Евклида, или пятого постулата, как одной из аксиом, лежащих в основании классической планиметрии. Разработка Николаем Ивановичем Лобачевским доказательства V постулата.
презентация, добавлен 13.04.2012Изучение основных способов задания прямой на плоскости и в пространстве. Взаимное расположение прямых в пространстве: параллельные, пересекающиеся и скрещивающиеся. Взаимное расположение прямой и плоскости: параллельна, лежит в плоскости и ее пересекает.
курсовая работа, добавлен 01.12.2017Понятие и виды матриц, операции с ними. Способы вычисления определителей второго, третьего и высших порядков. Матричный способ задания системы линейных уравнений. Свойство параллельности и перпендикулярности прямых. Уравнения плоскости в пространстве.
лекция, добавлен 18.03.2015- 82. Тела вращения
Виды тел вращения. Определение цилиндра, конуса, шара. Нахождение объемов и площадей поверхностей тел вращения: фигуры, формулы расчета и правила. Доказательство теоремы об объёме шара с определенным радиусом. Понятие шарового сегмента и шарового сектора.
презентация, добавлен 12.05.2011 Определение периметра и площади треугольника, длины ребра, объем, уравнения плоскости пирамиды по координатам вершин данных фигур. Приведение уравнения кривой второго порядка к каноническому виду. Решение системы линейных уравнений с тремя неизвестными.
контрольная работа, добавлен 15.11.2013Позиционные задачи - задачи, связанные с определением взаимного расположения геометрических фигур. Определение точки пересечения прямой с плоскостью. Перпендикулярность и параллельность прямой и плоскости. Построение линии пересечения двух плоскостей.
лекция, добавлен 20.12.2010Сущность уравнения прямой в пространстве как результат пересечения двух плоскостей. Рассмотрение нормального вектора плоскости и уравнения координатных плоскостей. Составление канонического уравнения прямой. Векторное параметрическое уравнение прямой.
контрольная работа, добавлен 13.04.2016Уравнение плоскости, проходящей через точку. Нормальный вектор плоскости. Исследование общего уравнения плоскости. Уравнение плоскости "в отрезках". Условия параллельности и перпендикулярности двух плоскостей. Нахождение расстояния от точки до плоскости.
лекция, добавлен 09.07.2015Предназначение начертательной геометрии, характеристика центральных и параллельных проекций. Описание способов задания плоскости на эпюре. Определение расстояния от точки до плоскости. Взаимное пересечение тел, ограниченных поверхностями вращения.
учебное пособие, добавлен 07.11.2015Понятие и свойства вектора как математической абстракции объекта. Исследование декартовой системы координат в пространстве. Расчет плоскостей. Виды параметрических уравнений прямой. Связь полярных координат с декартовыми. Гиперболический параболоид.
лекция, добавлен 22.11.2015Понятие инверсии плоскости. Аналитическое выражение инверсии. Образы прямых и окружностей, инвариантные окружности, свойства углов и расстояний при инверсии. Инверсия и гомотетия. Применение инверсии при решении задач на построение и на доказательство.
курсовая работа, добавлен 02.02.2011Преобразование линии, фигуры, плоскости. Определение и виды движения. Особые свойства переноса. Понятие центральной и осевой симметрии. Доказательство признаков равенства треугольников. Использование поворота отрезков при решении геометрических задач.
реферат, добавлен 03.10.2019Понятие множества как фундаментального неопределяемого понятия математики. Сущность пустого и универсального множеств. Способы их задания. Свойства операций над множествами, их сравнение. Диаграммы Эйлера как представление отношений между подмножествами.
презентация, добавлен 19.09.2017Понятие "комплексный чертеж". Решение простарансвенных задач на комплексном чертеже. Оси проекций на комплексном чертеже. Способ замены плоскостей проекции, вращения и определение величины плоских фигур. Сущность двухпроекционного комплексного чертежа.
реферат, добавлен 26.02.2010- 93. Теорема Фалеса
Теорема Фалеса как одна из теорем планиметрии. Равенство отрезков на обеих секущих между собой. Способ определения расстояния от берега до видимого корабля с помощью свойства подобия треугольников. Установление высоты пирамиды Хеопса Фалесом по тени.
презентация, добавлен 25.10.2011 Понятие функции в математике, её основные свойства, аналитический и табличный способы задания. Виды функций и их свойства, коэффициент пропорциональности k. Область определения функции. Правила определения областей возрастания и убывания функций.
контрольная работа, добавлен 13.10.2015Аксиоматический метод построения научной теории. Основные понятия. "Начала" Евклида. Модель планиметрии Лобачевского на евклидовой плоскости. Геометрия Лобачевского. Исторические сведения о развитии тригонометрии. Тригонометрические соотношения.
реферат, добавлен 14.07.2008История интегрального исчисления. Основные этапы, характеризующие метод Архимеда. Общий принцип Кавальери для площадей плоских фигур. Определение и свойства интеграла. Способы нахождения площади криволинейной трапеции. Применение интеграла в физике.
реферат, добавлен 19.10.2010Понятие и свойства тройных интегралов. Замкнутая и ограниченная область в пространстве. Вычисление интегральной суммы для функции и ее конечный предел, способы вычисления. Свойства и пути замены переменных. Нахождение площадей, ограниченных кривыми.
презентация, добавлен 17.09.2013Параллельность и перпендикулярность прямых и плоскостей. Свойства многогранников, их основные виды. Нахождение площади призмы, параллелепипеда, пирамиды, трапеции и ромба, их высоты и сторон, боковых ребер и граней. Векторы в пространстве, их сложение.
учебное пособие, добавлен 01.04.2013Методика вычисления координат на линии и в плоскости. Основные принципы расчета площади геометрических фигур. Ознакомление с уравнениями прямой линии. Способы построения точек для эллипса, гиперболы и параболы. Математические действия над векторами.
курс лекций, добавлен 22.11.2015Основные виды стереометрических задач. Расчет угла между прямой и плоскостью. Рассмотрение особенностей теоремы Пифагора. Система координат на плоскости. Сущность понятия ортогональность векторов. Порядок поиска расстояний между прямыми в геометрии.
презентация, добавлен 02.03.2014