Уравнения с-образными коэффициентами

Разработка метода исследования дифференциальных уравнений с-образными коэффициентами с помощью аппроксимирующих семейств операторов, являющихся возмущениями исходного оператора. Применение теории к исследованию уравнений с-образными коэффициентами.

Подобные документы

  • Система двух функционально-дифференциальных уравнений общего вида. Достаточные условия разрешимости периодической краевой задачи для этой системы в случае резонанса. Периодическая краевая задача для системы функционально-дифференциальных уравнений.

    статья, добавлен 26.04.2019

  • Метод фазового пространства, редукция сингулярного пространства. Основные сведения об относительных резольвентах. Результаты по теории дифференциальных операторов в банаховых пространствах. Конечномерная управляемость уравнения соболевского типа.

    автореферат, добавлен 15.09.2012

  • Рассмотрение начальной задачи для систем уравнений и использование развитой методики дополнительного аргумента для решения задачи. Применение развитой методики для доказательства существования решения новых видов векторно-матричных нелинейных уравнений.

    статья, добавлен 07.08.2020

  • Решение однородных и неоднородных линейных систем. Существование фундаментальной матрицы и ее построение. Анализ методов вариации произвольных постоянных. Решение дифференциальных уравнений первого порядка. Элементы теории устойчивости, уравнение Пфаффа.

    курс лекций, добавлен 11.10.2014

  • Общие понятия, определения и примеры дифференциальных уравнений. Дифференциальные уравнения I порядка, задача Коши. Уравнения с разделяющимися переменными, линейные уравнения. Теорема существования и единственности решения дифференциального уравнения.

    курсовая работа, добавлен 16.04.2015

  • Определение иррациональных уравнений и их математические модели. Измерение отрезков в неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Равносильные уравнения и их следствия. Методы решения иррациональных уравнений.

    реферат, добавлен 29.10.2010

  • Исследование этапов решения начальной задачи для дифференциального уравнения второго порядка со случайными коэффициентами. Расчет формулы для нахождения его математического ожидания в случае равномерного закона распределения случайного коэффициента.

    статья, добавлен 21.06.2018

  • Иван Георгиевич Петровский - известнейший и талантливейший математик XX века: талантливый организатор и общественный деятель, автор современной теории дифференциальных уравнений, многих научных работ которые используются в разных областях математики.

    реферат, добавлен 05.03.2009

  • Способ доказательства существования и единственности решения краевой задачи для уравнения третьего порядка с кратными характеристиками методом интегралов энергии и методом эквивалентной редукции к интегральному уравнению Фредгольма второго рода.

    статья, добавлен 30.09.2012

  • Простейшие тригонометрические уравнения в алгебре. Порядок разложения равенств на множители. Изучение метода подстановки как алгебраического способа решения системы линейных уравнений. Дробно-рациональные и иррациональные тригонометрические уравнения.

    реферат, добавлен 31.03.2014

  • Понятие обыкновенных дифференциальных уравнений и их применение для математического моделирования электромеханических систем. Приведение дифференциальных уравнений к нормальной форме Коши. Пример решения задачи методом Рунге-Кутты 2-го и 4-го порядков.

    реферат, добавлен 05.06.2013

  • Связь нелокальных задач с нагруженными уравнениями. Понятие управления решения дифференциальных (нагруженных) уравнений со скоростью. Рассмотрение скорости изменения величин как характеристики исследования процессов. Вычисление исправленной производной.

    статья, добавлен 20.05.2018

  • Алгоритм нахождения корня уравнения с помощью численного метода. Геометрическая иллюстрация метода бисекций. Метод половинного деления. Проведение определения является ли функция непрерывной и принимает ли значения противоположных знаков на отрезке.

    статья, добавлен 17.02.2019

  • Теорема существования и единственности решения. Принципы графического представления задачи Коши в математике. Характеристики частного решения дифференциального уравнения. Особые точки и способы их использования дифференциальных уравнений первого порядка.

    контрольная работа, добавлен 04.12.2014

  • Получение новых достаточных условий разрешимости краевых задач для различных классов квазилинейных функционально-дифференциальных уравнений с необратимой линейной частью. Проблема разрешимости операторного уравнения, характеристика используемых теорем.

    автореферат, добавлен 26.01.2018

  • Рассмотрение методов исследования устойчивости разностных схем для линейных эволюционных уравнений в частных производных (гиперболического и параболического типов). Численное решение дифференциальных уравнений в частных производных параболического типа.

    курс лекций, добавлен 29.11.2020

  • Анализ результатов тестирования численного метода решения систем дифференциальных уравнений с задержанным аргументом, описывающих системы с хаотической динамикой, в пакете MatLab. Оценка фактической ошибки численного решения тестовой системы уравнений.

    статья, добавлен 27.04.2019

  • Метод Эйлера как простейший численный метод решения систем обыкновенных дифференциальных уравнений. Описание данного метода, дающего решение в виде таблицы приближенных значений искомой функции, его исправления и модификации. Оценка погрешности.

    реферат, добавлен 27.10.2019

  • Изучение трансцендентных уравнений, включающих алгебраические, тригонометрические и экспоненциальные функции. Характеристика точных и итерационных методов. Этапы нахождения корня уравнения итерационным способом. Применение метода половинного деления.

    контрольная работа, добавлен 17.05.2019

  • Дифференциальные уравнения первого порядка: уравнения в частных производный и обыкновенные дифференциальные уравнения. Понятие интегральной кривой. Связь между геометрическая интерпретация уравнения и его решения. Теорема существования и единственности.

    курсовая работа, добавлен 11.04.2014

  • Уравнения, содержащие неизвестные в показателе степени. Использование метода приведения к одному основанию при решении показательных уравнений. Особенности решения уравнений методом оценки, графическим методом и методом введения новых переменных.

    презентация, добавлен 27.05.2014

  • Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.

    контрольная работа, добавлен 02.12.2012

  • Решение задачи Коши для жестких систем дифференциальных уравнений. Исследование (m,к)-методов решения жестких задач, в которых на каждом шаге два раза вычисляется часть системы дифференциальных уравнений. Построение (4,2)-метода максимального порядка.

    статья, добавлен 31.05.2013

  • Проведение анализа известных численных методов построения приближений, сходящихся к спектральному радиусу оператора и к собственным векторам. Определение значения спектрального радиуса оператора и разработка алгоритмов решения операторных уравнений.

    автореферат, добавлен 10.12.2013

  • История развития знаний и известные способы решения квадратных уравнений. Зависимость корней от знака дискриминанта. Решение квадратных уравнений с помощью циркуля, линейки. Свойства коэффициентов квадратного уравнения, теорема Виета и задача Диофанта.

    презентация, добавлен 13.01.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.